380 research outputs found

    Thermodynamic controls on element partitioning between titanomagnetite and andesitic–dacitic silicate melts

    Get PDF
    Titanomagnetite–melt partitioning of Mg, Mn, Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta was investigated experimentally as a function of oxygen fugacity (fO2) and temperature (T) in an andesitic–dacitic bulk-chemical compositional range. In these bulk systems, at constant T, there are strong increases in the titanomagnetite–melt partitioning of the divalent cations (Mg2+, Mn2+, Co2+, Ni2+, Zn2+) and Cu2+/Cu+ with increasing fO2 between 0.2 and 3.7 log units above the fayalite–magnetite–quartz buffer. This is attributed to a coupling between magnetite crystallisation and melt composition. Although melt structure has been invoked to explain the patterns of mineral–melt partitioning of divalent cations, a more rigorous justification of magnetite–melt partitioning can be derived from thermodynamic principles, which accounts for much of the supposed influence ascribed to melt structure. The presence of magnetite-rich spinel in equilibrium with melt over a range of fO2 implies a reciprocal relationship between a(Fe2+O) and a(Fe3+O1.5) in the melt. We show that this relationship accounts for the observed dependence of titanomagnetite–melt partitioning of divalent cations with fO2 in magnetite-rich spinel. As a result of this, titanomagnetite–melt partitioning of divalent cations is indirectly sensitive to changes in fO2 in silicic, but less so in mafic bulk systems.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published pdf

    The human semicircular canal model of galvanic vestibular stimulation

    Get PDF
    A vector summation model of the action of galvanic stimuli on the semicircular canals has been shown to explain empirical balance and perceptual responses to binaural-bipolar stimuli. However, published data suggest binaural-monopolar stimuli evoke responses that are in the reverse direction of the model prediction. Here, we confirm this by measuring balance responses to binaural-monopolar stimulation as movements of the upper trunk. One explanation for the discrepancy is that the galvanic stimulus might evoke an oppositely directed balance response from the otolith organs that sums with and overrides the semicircular canal response. We tested this hypothesis by measuring sway responses across the full range of head pitch. The results showed some modulation of sway with pitch such that the maximal response occurred with the head in the primary position. However, the effect fell a long way short of that required to reverse the canal sway response. This indicates that the model is incomplete. Here, we examine alterations to the model that could explain both the bipolar and monopolar-evoked behavioural responses. An explanation was sought by remodelling the canal response with more recent data on the orientation of the individual canals. This improved matters but did not reverse the model prediction. However, the model response could be reversed by either rotating the entire labyrinth in the skull or by altering the gains of the individual canals. The most parsimonious solution was to use the more recent canal orientation data coupled with a small increase in posterior canal gain

    The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5GPa

    Get PDF
    Geochemical and isotopic data suggest that the source regions of oceanic basalts may contain pyroxenite in addition to peridotite. In order to incorporate the wide range of compositions and melting behaviors of pyroxenites into mantle melting models, we have developed a new parameterization, Melt-PX, which predicts near-solidus temperatures and extents of melting as a function of temperature and pressure for mantle pyroxenites. We used 183 high-pressure experiments (25 compositions; 0.9–5 GPa; 1150–1675°C) to constrain a model of melt fraction versus temperature from 5% melting up to the disappearance of clinopyroxene for pyroxenites as a function of pressure, temperature, and bulk composition. When applied to the global set of experimental data, our model reproduces the experimental F values with a standard error of estimate of 13% absolute; temperatures at which the pyroxenite is 5% molten are reproduced with a standard error of estimate of 30°C over a temperature range of ~500°C and a pressure range of ~4 GPa. In conjunction with parameterizations of peridotite melting, Melt-PX can be used to model the partial melting of multilithologic mantle sources—including the effects of varying the composition and the modal proportion of pyroxenite in such source regions. Examples of such applications include calculations of isentropic decompression melting of a mixed peridotite + pyroxenite mantle; these show that although the potential temperature of the upwelling mantle plays an important role in defining the extent of magma production, the composition and mass fraction of the pyroxenite also exert strong controls

    Thermodynamics of mixing in diopside-jadeite, CaMgSi2O6-NaAlSi2O6, solid solution from staticlattice energy calculations

    Get PDF
    Static lattice energy calculations (SLEC), based on empirical interatomic potentials, have beenperformed for a set of 800 different structures in a 2 2 4 supercell of C2/c diopside with compositionsbetween diopside and jadeite, and with different states of order of the exchangeable Na/Ca and Mg/Al cations. Excess static energies of these structures have been cluster expanded in a basis set of 37 pair-interaction parameters. These parameters have been used to constrain Monte Carlo simulations of temperature-dependent properties in the range of 273?2,023 K and to calculate a temperature?composition phase diagram. The simulations predict the order?disorder transition in omphacite at1,150 20C in good agreement with the experimental data of Carpenter (Mineral Petrol 78:433?440, 1981). The stronger ordering of Mg/Al within the M1 site than of Ca/Na in the M2 site is attributed to the shorter M1?M1 nearest-neighbor distance, and, consequently, the stronger ordering force. The comparison of the simulated relationship between the order parameters corresponding to M1 and M2 sites with the X-ray refinement data on natural omphacites (Boffa Ballaran et al. in Am Mineral83:419?433, 1998) suggests that the cation ordering becomes kinetically ineffective at about 600C

    Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression

    Get PDF
    Reproductive meristems and embryos display dormancy mechanisms in specialized structures named respectively buds and seeds that arrest the growth of perennial plants until environmental conditions are optimal for survival. Dormancy shows common physiological features in buds and seeds. A genotype-specific period of chilling is usually required to release dormancy by molecular mechanisms that are still poorly understood. In order to find common transcriptional pathways associated to dormancy release, we analyzed the chilling-dependent expression in embryos of certain genes that were previously found related to dormancy in flower buds of peach. We propose the presence of short and long-term dormancy events affecting respectively the germination rate and seedling development by independent mechanisms. Short periods of chilling seem to improve germination in an abscisic acid-dependent manner, whereas the positive effect of longer cold treatments on physiological dwarfing coincides with the accumulation of phenylpropanoids in the seed

    Excess Silica in Omphacite and the Formation of Free Silica in Eclogite

    Get PDF
    Silica lamellae in eclogitic clinopyroxene are widely interpreted as evidence of exsolution during decompression of eclogite. However, mechanisms other than exsolution might produce free silica, and the possible mechanisms depend in part on the nature and definition of excess silica. ‘Excess’ silica may occur in both stoichiometric and non-stoichiometric pyroxene. Although the issue has been debated, we show that all common definitions of excess silica in non-stoichiometric clinopyroxene are internally consistent, interchangeable, and therefore equivalent. The excess silica content of pyroxene is easily illustrated in a three-component, condensed composition space and may be plotted directly from a structural formula unit or recalculated end-members. In order to evaluate possible mechanisms for the formation of free silica in eclogite, we examined the net-transfer reactions in model eclogites using a Thompson reaction space. We show that there are at least three broad classes of reactions that release free silica in eclogite: (i) vacancy consumption in non-stoichiometric pyroxene; (ii) dissolution of Ti-phases in pyroxene or garnet; (iii) reactions between accessory phases and either pyroxene or garnet. We suggest that reliable interpretation of the significance of silica lamellae in natural clinopyroxene will require the evaluation not only of silica solubility, but also of titanium solubility, and the possible roles of accessory phases and inclusions on the balance of free silica
    corecore