363 research outputs found

    Italian Map of Design Earthquakes from Multimodal Disaggregation Distributions: Preliminary Results.

    Get PDF
    Probabilistic seismic hazard analysis allows to calculate the mean annual rate of exceedance of ground motion intensity measures given the seismic sources the site of interest is subjected to. This piece of information may be used to define the design seismic action on structures. Moreover, through disaggregation of seismic hazard, it is possible to identify the earthquake giving the largest contribution to the hazard related to a specific IM value. Such an information may also be of useful to engineers in better defining the seismic treat for the structure of interest (e.g., in record selection for nonlinear seismic structural analysis). On the other hand, disaggregation results change with the spectral ordinate and return period, and more than a single event may dominate the hazard, especially if multiple sources affect the hazard at the site. In this work disaggregation for structural periods equal to 0 sec and 1.0 sec is presented for Italy, with reference to the hazard with a 475 year return period. It will be discussed how for the most of Italian sites more than a design earthquake exist, because of the modelling of seismic sources

    Real-time risk analysis for hybrid earthquake early warning systems

    Get PDF
    Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of the ground motion at the site, conditioned to the seismic network measures, may be performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and used for real-time risk management purposes. However, such prediction is performed in very uncertain conditions which have to be taken into proper account to limit false and missed alarms. In the present study, real-time risk analysis for early warning purposes is discussed. The magnitude estimation is performed via the Bayesian approach, while the earthquake localization is based on the Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold

    Toward validation of simulated accelerograms via prediction equations for nonlinear SDOF response

    Get PDF
    Seismic structural risk analysis of critical facilities may require nonlinear dynamic analysis for which record selection is one of the key issues. Notwithstanding the increasing availability of database of strong-motion records, it may be hard to find accelerograms that fit a specific scenario (e.g., in terms of magnitude and distance) resulting from hazard assessment at the site of interest. A possible, alternative, approach can be the use of artificial and/or simulated ground motion in lieu of real records. Their employment requires systematic engineering validation in terms of structural response and/or seismic risk. Prediction equations for peak and cyclic inelastic single degree of freedom systems’ response, based on Italian accelerometric data, are discussed in this study as a possible benchmark, alongside real record counterparts, for the validation of synthetic records. Even if multiple events would be in principle required, an extremely preliminary validation is carried out considering only four simulated records of the 1980 Irpinia (southern Italy) M w 6.9 earthquake. Simulated records are obtained through a broadband hybrid integral-composite technique. Results show how this simulation method may lead to generally acceptable results. It is also emphasized how this kind of validation may provide additional results with respect to classical signal-to-signal comparison of real and simulated records

    Mechanical Systems: Symmetry and Reduction

    Get PDF
    Reduction theory is concerned with mechanical systems with symmetries. It constructs a lower dimensional reduced space in which associated conservation laws are taken out and symmetries are \factored out" and studies the relation between the dynamics of the given system with the dynamics on the reduced space. This subject is important in many areas, such as stability of relative equilibria, geometric phases and integrable systems

    Real-time risk analysis for hybrid earthquake early warning systems

    Get PDF
    Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of the ground motion at the site, conditioned to the seismic network measures, may be performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and used for real-time risk management purposes. However, such prediction is performed in very uncertain conditions which have to be taken into proper account to limit false and missed alarms. In the present study, real-time risk analysis for early warning purposes is discussed. The magnitude estimation is performed via the Bayesian approach, while the earthquake localization is based on the Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold

    REAL-TIME HAZARD ANALYSIS FOR EARTHQUAKE EARLY WARNING

    Get PDF
    Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in reducing vulnerability and/or exposition of buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid estimation of event features by means of limited information of the P-waves. Then, when an event is occurring, probabilistic distributions of magnitude and source-to-site distance are available and the prediction of the ground motion at the site, conditioned to the seismic network measures, may be performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and used for real-time risk management purposes. However, such prediction is performed in very uncertain conditions which have to be taken into proper account to limit false and missed alarms. In the present study, real-time risk analysis for early warning purposes is discussed. The magnitude estimation is performed via the Bayesian approach, while the earthquake localization is based on the Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold

    Aerosol Jet Printing of a Benzocyclobutene-Based Ink as Adhesive Material for Wafer Bonding Application

    Get PDF
    Aerosol jet printing (AJP) is an emerging additive manufacturing technology that is gaining increasing attention in the electronic field. Several studies have been carried out on the AJP of conductive, semiconductive, and dielectric polymers for electronic applications. However, wafer bonding is an application that is still uncovered by literature. Therefore, in this work, the AJP of benzocyclobutene (BCB) as a polymeric adhesive for wafer bonding is presented for the first time. A thorough characterization of the processing parameters is carried out to identify the most ideal conditions for printing at a relatively high speed. Then, square patterns are printed, proving the versatility of the AJP technology in terms of the reachable thickness of the deposited BCB patterns. Complex patterns with a resolution of approximate to 60 mu m are also printed. The bonding properties of the BCB are characterized from a morphological and mechanical point of view. In particular, the shear strength of the BCB coatings deposited with AJP is approximate to 39 MPa and it is comparable with the shear strength of BCB coating deposited by spin-coating. Consequently, AJP represents a valid alternative for the deposition of polymeric adhesive for wafer bonding

    On-site early-warning system for bishkek (Kyrgyzstan)

    Get PDF
    <p>In this work, the development of an on-site early warning system for Bishkek (Kyrgyzstan) is outlined. Several low cost sensors equipped with MEMS accelerometers are installed in eight buildings distributed within the urban area. The different sensing units communicate each other via wireless links and the seismic data are streamed in real-time to the data center using internet. Since each single sensing unit has computing capabilities, software for data processing can be installed to perform decentralized actions. In particular, each sensing unit can perform event detection task and run software for on-site early warning. If a description for the vulnerability of the building is uploaded in the sensing unit, this piece of information can be exploited to introduce the expected probability of damage in the early-warning protocol customized for a specific structure.</p

    Corevalve vs. Sapien 3 transcatheter aortic valve replacement: A finite element analysis study

    Get PDF
    Aim: to investigate the factors implied in the development of postoperative complications in both self-expandable and balloon-expandable transcatheter heart valves by means of finite element analysis (FEA). Materials and methods: FEA was integrated into CT scans to investigate two cases of postoperative device failure for valve thrombosis after the successful implantation of a CoreValve and a Sapien 3 valve. Data were then compared with two patients who had undergone uncomplicated transcatheter heart valve replacement (TAVR) with the same types of valves. Results: Computational biomechanical modeling showed calcifications persisting after device expansion, not visible on the CT scan. These calcifications determined geometrical distortion and elliptical deformation of the valve predisposing to hemodynamic disturbances and potential thrombosis. Increased regional stress was also identified in correspondence to the areas of distortion with the associated paravalvular leak. Conclusion: the use of FEA as an adjunct to preoperative imaging might assist patient selection and procedure planning as well as help in the detection and prevention of TAVR complications

    Prolonged podocyte depletion in larval zebrafish resembles mammalian focal and segmental glomerulosclerosis

    Get PDF
    Focal and segmental glomerulosclerosis (FSGS) is a histological pattern frequently found in patients with nephrotic syndrome that often progress to end-stage kidney disease. The initial step in development of this histologically defined entity is injury and ultimately depletion of podocytes, highly arborized interdigitating cells on the glomerular capillaries with important function for the glomerular filtration barrier. Since there are still no causal therapeutic options, animal models are needed to develop new treatment strategies. Here, we present an FSGS-like model in zebrafish larvae, an eligible vertebrate model for kidney research. In a transgenic zebrafish strain, podocytes were depleted, and the glomerular response was investigated by histological and morphometrical analysis combined with immunofluorescence staining and ultrastructural analysis by transmission electron microscopy. By intravenous injection of fluorescent high-molecular weight dextran, we confirmed leakage of the size selective filtration barrier. Additionally, we observed severe podocyte foot process effacement of remaining podocytes, activation of proximal tubule-like parietal epithelial cells identified by ultrastructural cytomorphology, and expression of proximal tubule markers. These activated cells deposited extracellular matrix on the glomerular tuft which are all hallmarks of FSGS. Our findings indicate that glomerular response to podocyte depletion in larval zebrafish resembles human FSGS in several important characteristics. Therefore, this model will help to investigate the disease development and the effects of potential drugs in a living organism
    corecore