
Journal of Earthquake Engineering (in press) 
© Imperial College Press 

1 

REAL-TIME RISK ANALYSIS FOR HYBRID EARTHQUAKE EARLY 
WARNING SYSTEMS 

IUNIO IERVOLINO 
Dipartimento di Analisi e Progettazione Strutturale, Università di Napoli Federico II 

Via Claudio 21, 80125 Naples, Italy 

VINCENZO CONVERTITO 
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano  

C/o Laboratorio RISSC,  via Coroglio 156, 80124 Naples, Italy 

MASSIMILIANO GIORGIO 
Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università di Napoli 

 Via Roma 29, 81031 Aversa, Italy  

GAETANO MANFREDI* 
Dipartimento di Analisi e Progettazione Strutturale, Università di Napoli Federico II 

Via Claudio 21, 80125 Naples, Italy 
gaetano.manfredi@unina.it  

ALDO ZOLLO 
Dipartimento di Scienze Fisiche, Università di Napoli Federico II 
C/o Laboratorio RISSC,  via Coroglio 156, 80124 Naples, Italy 

Received (received date) 
Revised (revised date) 

Accepted (accepted date) 

Earthquake Early Warning Systems (EEWS), based on real-time prediction of ground motion or 
structural response measures, may play a role in reducing vulnerability and/or exposition of 
buildings and lifelines. In fact, recently seismologists developed efficient methods for rapid 
estimation of event features by means of limited information of the P-waves. Then, when an event is 
occurring, probabilistic distributions of magnitude and source-to-site distance are available and the 
prediction of the ground motion at the site, conditioned to the seismic network measures, may be 
performed in analogy with the Probabilistic Seismic Hazard Analysis (PSHA). Consequently the 
structural performance may be obtained by the Probabilistic Seismic Demand Analysis (PSDA), and 
used for real-time risk management purposes. However, such prediction is performed in very 
uncertain conditions which have to be taken into proper account to limit false and missed alarms. In 
the present study, real-time risk analysis for early warning purposes is discussed. The magnitude 
estimation is performed via the Bayesian approach, while the earthquake localization is based on the 
Voronoi cells. To test the procedure it was applied, by simulation, to the EEWS under development 
in the Campanian region (southern Italy). The results lead to the conclusion that the PSHA, 
conditioned to the EEWS, correctly predicts the hazard at the site and that the false/missed alarm 
probabilities may be controlled by set up of an appropriate decisional rule and alarm threshold. 
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1. Introduction 

An Earthquake Early Warning System (EEWS) is made of a network of seismic 
instruments which can provide real-time measures, on an occurring event, to some central 
processing station, which elaborates the information for risk management purposes 
[Heaton, 1985]. In fact, EEWS may help in real-time vulnerability/exposition reduction 
to minimize losses, or in directing rescue operations immediately after an earthquake for 
emergency preparedness [Wieland, 2001]. The “early” information, provided by the 
EEWS in the first seconds of the earthquake, may be used, to spread the alarm to the 
community, to infer data or to activate different types of security measures, such as shut 
down of critical systems and stopping of high speed trains [Veneziano and Papadimitriou, 
1998]. 

Earthquake Early Warning Systems may be simplistically classified, on the basis of 
the seismic network configuration, as regional or site-specific. Regional EEWS’ typically 
would consist of a number of seismic stations covering a potential source zone. Such 
systems are designed to provide data that can be used to estimate the main parameters of 
the event, as time of origin, magnitude and location and to predict ground motion at some 
other sites in a large area (rapid response system). This processing may require 
significant time and therefore these systems are mainly devoted to near-real-time 
applications as shake maps, which are territorial distributions of ground shaking  
employed for emergency management [Wald et al., 1999].  

For critical facilities with a large loss potential, a fence of seismic instruments may be 
placed around the equipment to protect it. This is the case of site-specific EEWS’, which 
reduce the risk connected to the failure of nuclear power plants or lifelines by providing 
sufficient warning time to take measures to decrease the vulnerability or exposition 
(alarm system) [Wieland et al., 2000]. The networks devoted to site specific Earthquake 
Early Warning are much smaller than those of the regional type, only covering the 
surroundings of the system; the distance of the seismic instruments from the facility 
depends on the lead time needed to activate the safety procedures before the arrival of the 
more energetic seismic phase. Typically the alarm is issued when the ground motion at 
one or more sensors exceeds a given threshold. In fact, unlike the regional case, site-
specific EEWS’ only measure the ground shaking at the network and do not attempt to 
estimate the features of the event, which would require unacceptable computational time. 

Due to a large development of regional networks in recent years worldwide (see 
SAFER project [2005] for example) the question of using EEWS’ for site-specific 
applications is rising. In fact, nowadays real-time seismology allows a hybrid use of 
regional and on-site warning methods [Kanamori, 2005],[Cua, 2005]. Recent efforts on 
rapid estimation of the earthquake’s magnitude and location make available a prediction 
of the ground motion at the site from a few seconds to a few tens of seconds before its 
arrival.  

The formulation of real-time seismic risk analysis for structure-specific applications 
of regional EEWS is the topic of the study herein presented. The objective is to predict, in 
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a full probabilistic approach, a ground motion Intensity Measure (IM) at a site (i.e. Peak 
Ground Acceleration or PGA) and the performance of a structure of interest, in terms of 
an Engineering Demand Parameter (EDP), conditioned to the real-time information 
provided by the seismic network. A scheme of the hybrid application of a regional 
network for structure-specific earthquake early warning (point warning) is shown in 
Figure 1.  
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Figure 1. Regional EWWS for structure-specific applications 

The risk analysis may help in real-time decision making aimed to vulnerability or 
exposition reduction. For example, EEWS’ predictions may be used for the set-up of 
active or semi-active structural control, in order to achieve a safer structural response to 
ground motion.  

In the following, in particular, it will be focused on real-time probabilistic seismic 
hazard analysis for risk management purposes; in this case, the seismic network estimates 
the earthquake's features and then the system predicts IM to give additional lead time. 
This process, however, includes significant uncertainty which may lead to false and 
missed alarms which both have a cost. In the case of not alarming, the loss is associated 
to the earthquake striking without any taken countermeasure; in the case of  an alarm, the 
preparedness interventions have a cost (social and/or economical) which may become a 
loss if the actual ground motion does not require such actions. Therefore, a key issue in 
the use of EEWS for risk management, is the estimation of missed and false alarm 
probabilities associated to the adopted decisional rule. This computation, on an empirical 
basis, should consist of post-event analysis of EEWS predictions and would require a 
large strong-motion waveforms database both for the network and the site where the 
structure is located. Since very rarely these databases are available, especially for large 
earthquakes, the missed/false alarms rates of occurrence have to be estimated in a 
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simulation framework (e.g. Montecarlo) using appropriate characterizations of the 
uncertainties involved in the prediction. This approach, which requires virtually no 
records other than those used to calibrate the method adopted for the estimation of 
magnitude (M) and source-to-site distance (R), is applied herein to the developing EEWS 
of the Campanian region (southern Italy) to estimate the frequency of error in decisions. 

2. Seismic Risk Analysis conditioned to the EEWS information 

Recently seismologists have developed several methods that enable to estimate the 
event’s magnitude on the basis of measures made on the first few seconds of P-waves 
signal. Similarly, as described in the following, the source-to-site distance may be 
predicted analyzing the triggering sequence (i.e. the order in which the seismic stations 
detect the earthquake). Applying these procedures to data gathered by the network, 
during the propagation of the event, it is possible to obtain information about M and R 
and perform real-time Probabilistic Seismic Hazard Analysis (PSHA) [Cornell, 
1968],[McGuire, 1995]. This results in a seismic hazard analysis conditioned (in a 
probabilistic sense) to the real-time information provided by the EEWS. Consequently, 
the distribution of the structural response may be also computed by Probabilistic Seismic 
Demand Analysis (PSDA) [Carballo and Cornell, 2000]. The probability density function 
of the structural response at the site when an event is occurring contains the highest level 
of information available, and therefore it seems to be the appropriate tool for real-time 
decision making. 

2.1. Real-time PSHA and PSDA 

At a given time t from the earthquake’s origin time, all the real-time information 
provided by the network can be synthesized in terms of Probability Density Functions 
(PDFs) of M and R. The PDF of M will be indicated as ( )

1 2| , ,..., 1 2| , ,...,Mf m
ντ τ τ ντ τ τ , 

because it is conditioned to { }1 2, ,..., ντ τ τ , the vector of measures made by the network. 
(Herein such measure is related to the predominant period of the first four seconds of p-
waves recordings, however the procedure virtually applies to any other magnitude-
correlated parameter.) 

The PDF of R, which, due to the method adopted (see next sections), only depends on 
the triggering sequence, will be referred as ( )

1 2| , ,..., 1 2| , ,...,R s s sf r s s s
ν ν ; where 

{ }1 2, ,...,s s sν  is such sequence. It is worth to underline that ν  is the number of 
instruments which have triggered and measured the parameter of interest τ  at the time t. 
This makes both the distributions time dependent; in fact, the amount of data included in 
the estimation process increases with time (i.e. more stations trigger as time flows). 

These PDFs may be used to compute the probabilistic distribution, or hazard curve, of 
a ground motion IM (i.e. PGA) at a site of interest by the seismic hazard integral reported 
in Eq.(1). 
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( )
( ) ( ) ( )

1 2 1 2| , ,..., 1 2 | , ,..., 1 2| , | , ,..., | , ,...,M R s s s
M R

f im

f im m r f m f r s s s dr dm
ν ν

ν

τ τ τ ν ν

=

= τ τ τ∫ ∫ (1) 

The PDF, ( )| ,f im m r , is given by an ordinary attenuation relationship. The subscript 
ν indicates that the computed hazard refers to a particular set of triggered stations and, 
consequently, also depends on t.  

For structural applications of EEWS the prediction of the structural response in terms 
of an EDP, rather than in terms of a ground motion IM, may be of main concern. This 
requires a further integration to get the PDF of EDP as reported in Eq.(2), 

 ( ) ( ) ( ) ( )|
IM

f edp f edp im f im d imν ν= ∫  (2) 

where the PDF, ( )|f edp im , is the probabilistic relationship between IM and EDP. 
For Moment Resisting Frame (MRF) structures, for example, such relationship is of the 
type in Eq.(3), relating the Maximum Inter-storey Drift Ratio (MIDR) to Sa(T1) (first 
mode spectral acceleration), which are the IM and EDP respectively.  

 ( )1( ) bMIDR a Sa T ε=  (3) 

In Eq.(3) the log of ε is a normal random variable with unity-median and variance 
equal to the variance of MIDR, and the coefficients a and b are obtained via non-linear 
incremental dynamic analysis [Vamvatsikos and Cornell, 2002]. Barroso and Winterstein 
[2002] have proposed a similar relationship for controlled structures. 

For the sake of simplicity it will be assumed in the following that the parameter to be 
predicted is IM only. This would keep the presentation of the method clear and the results 
of the application more easy to interpret. Since EDP is only a probabilistic transformation 
of IM, this choice would not affect the generality of the discussion. 

2.2. Magnitude estimate 

The integral given in Eq.(1) requires the distribution of magnitude (Ms herein), 
( )

1 2| , ,..., 1 2| , ,...,Mf m
ντ τ τ ντ τ τ , to be estimated on the basis of the data provided by the 

network at a given time. Herein, this PDF has been formulated combining, via the Bayes 
theorem, historical data and real-time information, Eq.(4), assuming that the stations 
always perform a measure and that the uncertainty expressed by the distribution of the 
magnitude, conditioned to such measure, includes eventual error of the instrument. 

( )
( ) ( )

( ) ( )

1 2

1 2

1 2

, ,..., | 1 2
| , ,..., 1 2

, ,..., | 1 2

, ,..., |
| , ,...,

, ,..., |
MAX

MIN

M M
M M

M M
M

f m f m
f m

f m f m dm

ν

ν

ν

τ τ τ ν
τ τ τ ν

τ τ τ ν

τ τ τ
τ τ τ

τ τ τ
=

∫
 (4) 
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In the Bayesian framework [Berger, 1985], the distribution ( )Mf m , which 
incorporates the information available before the experimental data are collected (e.g. 
before the network performs the measures, { }1 2, ,..., ντ τ τ ), is called a priori. In the 
seismic case it is a truncated exponential, Eq.(5), derived by the well known Gutenberg-
Richter recurrence relationship, 

 ( )
[ ]

maxmin min max

min max

:
0 ,

m

MM
M

e M m M
f m e e

m M M

β

ββ

β −

−−

⎧
≤ ≤⎪

−⎨
⎪ ∉⎩

 (5) 

where { }min max, ,M Mβ  depend on the seismic features of the region under study. The 

joint PDF ( )
1 2, ,..., | 1 2, ,..., |Mf m

ντ τ τ ντ τ τ , which reflects all the information concerning the 
magnitude contained into the real-time data, is called likelihood function. It has been 
formulated assuming that, given the magnitude, the iτ  measurements are lognormal, s-
independent and identically distributed random variables of parameters reported in Eq.(6) 

 ( ) ( )

( )

log

log

5.9 7

0.16

Mτ

τ

µ

σ

⎧ = −⎪
⎨

=⎪⎩
 (6) 

The value of ( )log τµ  is provided by the work of Allen and Kanamori [2003] about the 

relationship between the magnitude of the event and the log of the predominant period, 
τ , of the first four seconds of the P-waves (in the velocity recording) for the TriNet 
network. The dispersion, ( )log τσ , has been retrieved [Fontanella, 2005] from the data 

reported in the same paper under the omoskedasticity hypothesis. Then the likelihood 
results as reported in Eq.(7). 

  

( ) ( )

( )

1 2

2
log( )

log( )

, ,..., | 1 2 |
1

log( )1
2

log( )

, ,..., | |

1
2

i

M M i
i

i
i

f m f m

f m e

ν

τ

τ

ν

τ τ τ ν τ

τ µ
σ

τ
τ

τ τ τ τ

τ
π σ τ

=

⎛ ⎞−
⎜ ⎟− ⎜ ⎟
⎝ ⎠

⎧
=⎪

⎪
⎨
⎪ =⎪
⎩

∏
 (7) 

Since the Bayes theorem enable to correct the a priori on the basis of the data 
collected in real-time, the posterior ( )

1 2| , ,..., 1 2| , ,...,Mf m
ντ τ τ ντ τ τ , for its own nature, 

incorporates all the information that is effectively available.  

It is worth to underline that lognormality, s-independence and omoskedasticity, 
hypotheses do not conflict either with results reported in Allen and Kanamori [2003] or 
with the methods adopted to perform the analyses presented in the same work. 
Nevertheless, substituting Eq.(7) and Eq.(6) in Eq.(4), is possible to show that 

( )
1 2| , ,..., 1 2| , ,...,Mf m

ντ τ τ ντ τ τ  depends on data only through the summation of station 
measurements logarithms and the number of instruments triggered. This may largely 
reduce the required real-time computational effort. In fact, also due to the features of the 
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source-to-site distance PDF, the hazard integral may be performed offline for all 

1
log( ),i

i

ν

τ ν
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  pairs. 

2.3. Real-time location and distance PDF 

The real-time localization methodology considered is that of Satriano et al. [2006]  
which is based on Horiuchi et al. [2005] and the Equal Differential-Time (EDT) 
formulation [Font et al., 2004],[Lomax, 2005]. The EDT location is given by the 
maximum of a stack over quasi-hyperbolic surfaces, defined by the equal differential 
time equations, where the difference in calculated travel-times to a pair of stations is 
equal to the difference in observed arrival times for the two stations. Even though for a 
detailed discussion of the method the reader should refer to the cited papers, a brief 
description of the procedure is given in the following for readability of the present study. 

The algorithm defines a dense (e.g. 1km spaced) grid of points, each of those 
identified by a set of coordinates x ,  in the space (V) below the network. Then the P-
waves travel times to the N stations of the network, { }1 2

, ,...,
NS S S x

tt tt tt , may be 

computed for all the grid points once a velocity model of the region is assigned. The 
travel times allow to identify the sequence of stations triggered, { }1 2, ,..., N xS S S , if that 
point is the hypocenter of the event. 

During an earthquake, when the first station 1S  triggers with an absolute arrival time 

( )1t S , it is possible to define a volume that is likely to contain the hypocenter, it is the 
Voronoi cell of that station. This volume is given by the EDT surfaces on which the P-
waves travel time to the first triggering station, ( )

1Stt x , is equal to the travel-time to any 

of the not yet triggered stations, ( ) , 1
kStt x k ≠ . As time progresses, the information that 

a new station can trigger only at a time ( )kt S t≥  is gained. Thus the volume which may 
contain the hypocenter becomes bounded by the EDT surfaces satisfying the inequalities 

{ }
1 1

, 2,3,...,
kS S Stt tt t t k N− < − ∈ , where t is the current time and the k subscript 

indicates the not yet triggered stations.  

When the second and later instruments trigger, a second set of equations (the standard 
EDT equations), which account for all pairs of triggered stations, have to be considered: 

k m k mS S S Stt tt t t− = −  ( kS , mS  are triggered and k m≠ ). These EDT surfaces are stacked 
with the volume bounded by updated EDT surfaces (defined by the not yet triggered 
stations). 

The algorithm assigns, to any of the grid points a number, which may be interpreted 
as the probability of the hypocenter to be coincident with that point, depending on the 
number of equations that are satisfied. The computation of such probability for all the 
points gives the PDF of the hypocentral location in V. Consequently, the estimate of the 
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epicentral distance, ( )
1 2| , ,..., 1 2| , ,...,R s s sf r s s s

ν ν , may be retrieved by a geometrical 
transformation assigning, to any particular distance value, a probability which is the sum 
of the probabilities of all points of the grid with the same epicentral distance to the site. 

One of the main features of the procedure is that, as more stations trigger, the number 
of not yet triggered stations becomes smaller and location converge towards the 
hypocentral volume resulting from the standard EDT. Within 3 seconds reliable location 
(few kilometers uncertainty) can be obtained, also in the case of multiple, concurring 
events. 

3. Decisional rule and the cry wolf issue 

Once the EWWS provides a distribution of the ground motion intensity measure, or 
seismic demand for the structure of interest, a decisional condition has to be checked to 
launch the alarm or not. Several options are available to formulate a decisional rule, for 
example the alarm may be issued if the probability of the random variable exceeding a 
critical threshold ( CIM ) outcrosses a reference value ( CP ) as in Eq.(8). The CP  and 

CIM values have to be set in relation to an appropriate loss function for the structure of 
interest and the acceptable probabilities of error in decision. 

 ( ) ( )
0

: 1 [ ]
CIM

C CAlarm if f im d im P IM IM Pν− = > >∫   (8) 

The performance of the early warning system may be tested verifying if it “correctly” 
predicts the distribution of IM at the site; the efficiency of the decisional rule may be 
evaluated in terms of false and missed alarms probabilities (the cry wolf issue), FAP  and 

MAP  respectively [Patè-Cornell, 1986]. The false alarm occurs when, on the basis of the 
information processed by the EEWS, the alarm is issued while the intensity measure at 
the site TIM  (T subscript means “true” indicating the realization of the random variable 
to distinguish it from the prediction) is lower than the threshold CIM ; the missed alarm 
corresponds to not launching the alarm if needed, Eq.(9). 

 
{ }
{ }

:

:
T C

T C

Missed Alarm No Alarm IM IM

False Alarm Alarm IM IM

⎧ ∩ >⎪
⎨

∩ ≤⎪⎩
  (9) 

It has been discussed how the information and the uncertainties involved are 
dependent on the number of stations triggered at a certain time. Therefore, in principle, 
the decisional rules may be checked at any time since the first station has triggered and, 
consequently, the false and missed alarm probabilities are, also indirectly, a function of 
time. From this point of view the decisional process is again time dependent, and one 
may decide to alarm when the trade-off between the available lead time and the losses 
related to a missed or a false alarm is at its optimum. As an application, probabilities of 
these events according to the decisional rule, have been estimated by simulation for the 
Campanian EEWS. 
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4. Simulation of the SAMS Earthquake Early Warning System 

The Campanian early warning system (SAMS - Seismic Alert Management System) 
is based on the seismic network located in the Campano-Lucano Appennines [Weber et 
al., 2006]. Such network is operating in the seismically most active area for the 
Campanian region (100x80km2 wide) and it is designed to acquire non-saturated data for 
earthquakes larger than WM  4. In Figure 2 the 30 stations of the EEWS network (dark 
squares),  the WM  > 2 events recorded from 1981 to 2002 and the faulting system of the 
Irpinia 1980 earthquake are given. Light color squares represent additional stations which 
will be used to calibrate local attenuation relationships. 

 

0          25          50 km0          25          50 km

Napoli

Salerno

Avellino

Benevento
Caserta

Potenza

1981 – 2002 Seismicity
INGV Seismic Catalogue

Earthquake M>3
Earthquake M<3
1980 Earthquake Ms 6.9
Seismogenetic faults of 1980  Earthquake
Current Seismic Network
Seismic network under construction (2006)
Main City
Urbanized area  

Figure 2. The sensors network and the background seismicity of the region 

The real-time seismic hazard analysis procedure presented was applied to simulate 
the predictions of the SAMS and to assess the false/missed alarms probabilities. (In 
principle, to simulate the prediction of the IM and to compare it with the actual value at 
the site, for any event, a set of recordings in each station and at the site should be 
available. However, it is possible to simulate the behavior of the system without recorded 
signals, which are not available especially for rare events, but still on an empirical basis.) 
The procedure has been implemented in a computer code and it takes advantage of the 
discussed methods for the estimation of magnitude and distance. The predicted IM is the 
PGA. 
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Each run simulates a specific seismic event occurring in the area of interest and 
consists of three steps: (1) Simulation of event’s features (e.g. assignment of magnitude, 
location and true PGA at the site); (2) Simulation of the measurements and predictions 
(e.g. real-time PSHA) made by the network at any instant until the trigger of all the 
stations; (3) Check of the decisional rule and of the false/missed alarm conditions; (4) 
Increase of false/missed alarms counter to compute the frequencies of occurrence. The 
flow chart of the simulation procedure is given in Figure 3.  

 

 

Figure 3. Simulation’s flow chart 

The site considered in the simulation is assumed to be in the city of Naples, which is 
approximately 110km far from the center of the network (30s lead time). In Figure 4 the 
relative position of the network and the site are given in analogy with the scheme of  
Figure 1. 
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Figure 4. The EEWS-site Campanian scheme 

4.1. Event and ground motion features generation 

Each run in the Montecarlo simulation starts with the generation of the geophysical 
features the EEWS will try to estimate. These values will define the earthquake of that 
run. In other words, in order to compute the PSHA conditioned to the EEWS information, 
the distributions of M and R are required, then it is needed to establish the true value of 
those which will be called TM  and TR  (true magnitude and true source-to-site-distance 
respectively).  

The true magnitude of the event ( TM ) may be sampled according to the Gutenberg-
Richter recurrence relationship for the Campanian region (in Eq.(5): β = 1.69, minM = 4, 

maxM = 7), this will lead, over many runs, to a marginal evaluation of the EEWS 
performances. On the other hand, one may be interested in evaluating the EEWS’ 
performance with respect to a specific magnitude; in this case TM  for the all runs in the 
simulation has to be set to a fixed value of interest. This is useful in the light of assessing 
the EEWS performance conditioning it to high magnitude events, which are the more 
threatening. 

The location of the epicenter may be randomly chosen sampling its coordinates 

{ },epi epix y  from two s-independent uniform distributions defined in the area covered by 

the network. Once the epicentral coordinates are set, the distance TR  to the site (e.g. 
Naples) is readily obtained. Again, for some purposes one may want to set the location of 
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the epicenter to the same point assigning the same value of TR  for all the simulations. In 
the following, for both TM  and TR , this second option will be followed for sake of 
clarity and readability of results. 

The generation (or assignment) of a “true” magnitude and “true” distance in each 
Montecarlo run allows to get reference values for the prediction of the EEWS; similarly, 
the “true” ground motion at the site ( TPGA ) should also be set. The PGA experienced at 
the site is required to establish whether the decision, ensuing the decisional rule, 
produced in that run, a missed or a false alarm. The value of TPGA , consistent with the 
values of TM  and TR , is obtained by sampling the attenuation relationship which, by 
definition, provides the PDF of the ground motion intensity measure conditioned to 
{ },T TM R . (If many recorded signals would be available at the site for a given magnitude 
the empirical distribution of the PGA, as retrieved by the records, should be the same as 
provided by the attenuation law.) Herein the Sabetta and Pugliese [1996] attenuation is 
considered in its epicentral formulation. Therefore, in each run the value of TPGA  is 
sampled from a completely specified lognormal random variable.  

Finally the event is defined for the EEWS purposes since { }, ,T T TM R PGA  of the run 
are set; the next step consists of simulating the measurements at the stations consistently 
with these event’s features. 

4.2. Station measurements and M,R real-time distributions 

In the simulation process, at any given time t, the number ν  and sequence of stations 
triggered is computed assuming a homogeneous and isotropic propagation model with P- 
and S-waves velocities of 5.5km/s ( PV ) and 3.5km/s ( SV ) respectively. Similarly the 
lead time, defined as the remaining seconds required by the S-waves to hit the site, is 
calculated. 

Once the event is defined by { }, ,T T TM R PGA , the measurements of τ  for the 
triggered stations are needed to perform the real-time risk analysis. For example let’s 
consider first the case when only one station should have measured τ . It is possible to 
simulate the station’s measurement by sampling the empirical distribution of τ  
conditioned to the true magnitude of the event, ( )| |M Tf Mτ τ . Real τ  values measured 

from recorded signals would be distributed as ( )| |M Tf Mτ τ  by definition, and therefore 
such sampling is appropriate in a simulation approach. 

To generate τ  for more than one station, consistently with section 2.2, the 
measurements are considered s-independent conditionally to the event’s magnitude 
( TM ). Therefore, if ν  stations are triggered, all the ν  components of the { }1 2, ,..., ντ τ τ  

vector are obtained by sampling ν  times the ( )| |M Tf Mτ τ  PDF. Specific Campanian 

( )| |Mf mτ τ  are not yet available and data by Allen and Kanamori [2003] have to be 
used, they are based on τ  measurements on four seconds of recording, then herein the 



 Real Time Risk analysis for Hybrid EEWS 
 

 

13 

working hypothesis is that any station’s measurement is considered in the process if four 
seconds have passed from its trigger. 

Once the measurements vector { }1 2, ,..., ντ τ τ  is defined, the discussed Bayesian 
method may be applied to compute the magnitude’s distribution. In Figure 5 the resulting 
magnitude PDFs, for a single simulation of an M 6 event, are given.  

 

Figure 5. Magnitude distribution as the number of triggered stations increases ( 6TM = , 91TR km= ) 

When only few stations are triggered, the distributions underestimate the magnitude. 
In fact, when data are few the dominating information is that a priori of Eq.(5), which 
naturally tends to give larger occurrence probability to low magnitude events. More 
precisely, the Bayesian approach will tend to produce overestimates of magnitude when it 
is below the a priori mean and it will tend to underestimate it when it is larger than the 
mean. This effect is directly proportional to the difference between the expected value of 
the a priori and TM  and inversely proportional to the size of measurements’ vector. As 
more measurements became available, the prediction centers on the real value with a 
relatively small uncertainty. An estimator with these features is said biased by classic 
statisticians and other methods can be considered to get an unbiased estimators (i.e. 
maximum likelihood). Nevertheless the Bayesian approach was preferred because, even 
slightly biased, it gives, in the mean, smaller estimation errors due to the use of the a 
priori information.  
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The distribution of the source-to-site distance, ( )
1 2| , ,..., 1 2| , ,...,R S S Sf r S S S

ν ν , is only 
dependent on the sequence of stations triggered at t, which is known by computing the P-
waves travel times ( ,e j j Pt R V= where jR  is the distance of the j-th station from the 
epicenter) for all the stations in the network. It has been shown that, due to the features of 
the SAMS, the localization method, after only three seconds from the first trigger, 
determines the epicenter’s with only 1km of uncertainty [Satriano et al., 2006], which is 
negligible in respect to the other uncertainties involved in the process. Therefore, in 
principle, since the magnitude estimation starts after four seconds from the trigger of the 
first station, at that time it may be assumed that the source-to-site distance is known. 

4.3. Results and discussion 

The hazard integral of Eq.(1), with the estimated distributions of M and R and the 
attenuation relationship, allows the exceeding probability of PGA at the site to be 
computed as the event evolves and the stations trigger. The hazard curves corresponding 
to the event simulated in Figure 5 are given in Figure 6; the latter shows that the hazard 
increases as time flows (more τ  measurements available), consistently with the 
magnitude estimation results given in the former. 

 

 

Figure 6. EWWS conditioned seismic hazard as the number of stations increases ( 6TM = , 91TR km= ) 
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To discuss the hazard computed with the EEWS information, it may be compared to 
the “maximum knowledge status” which is the hazard calculated adopting the true value 
of magnitude and distance (this corresponds to consider no uncertainty in the M and R 
estimations). Such comparison is shown in Figure 7: the thick curve represents the 
complementary Cumulative Density Function (CDF) for the PGA when TM  (7) and TR  
(110km) are deterministically known; the thin curves are the results of 200 simulated 
events (see subsections 4.1 and 4.2) with the same magnitude and distance features of the 
maximum knowledge hazard. In the figure only the hazard curves corresponding to the 
case when all the stations triggered, ν = 30, are reported. 

 

Figure 7. EWWS conditioned seismic hazard in 200 simulations compared to the maximum knowledge 
condition ( 7TM = , 110TR km= ) 

The EEWS’ hazard correctly approximates the maximum knowledge condition even 
with significant variability of the curves. To reduce the latter, two strategies are possible: 
(a) developing more efficient procedures for rapid-estimation of magnitude or (b) 
increasing the size of the measurement sample, for instance, having a larger set of seismic 
stations in the source area. Option (b) may be costly or even unfeasible, but the 
estimation procedure would take significant advantage of it. As an example, the 
simulation of the SAMS has been performed fictitiously considering a network of a 
double size (60 stations) in the same area. In Figure 8 200 simulations, for events with 
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the same features of those in Figure 7, are given. The reduction in variability of the 
curves is significant. 

The thick curve in the two figures also point out that, in the hazard integral, the 
dominating uncertainty is that of the attenuation relationship; then to ultimately improve 
the prediction of the PGA, a local (i.e. less disperse) attenuation model is necessary. 

 

 

Figure 8. EWWS conditioned seismic hazard in 200 simulations with a seismic network of a double size 
( 7TM = , 110TR km= ) 

The simulation allows the computation of the frequency of missed and false alarms. 
For example, these probabilities are estimated by Eq.(10), where the numerator is the 
number of occurrence of MA or FA and TOTN  is the number of simulated events. Herein 
MA and FA only refer to wrong ground motion predictions neglecting issues due to 
system malfunctioning. 

 

[ ]

[ ]
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 (10) 

In Figure 9 such estimations are given for M 7 events with an epicentral distance of 
110km ( 410  simulations); ∆ and + symbols distinguish missed and false alarm plots 
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respectively. The curves are a function of time because the real-time PSHA is performed 
at each second from the first measurement, therefore, the decisional rule may be checked 
at any instant; consequently the false and missed alarm occurrences reflect the case if the 
decision of alarming or not would be taken at that instant.  

 

 

Figure 9. False and missed alarm probabilities for 410  events ( 7TM = , 110TR km= , 
20.3 /CPGA m s= , 0.2CP = ) 

To better understand the results of Figure 9 it is useful to discuss the given curves. 
The CPGA , in decisional rule of Eq.(8), is arbitrarily set to 0.3m/s2 and the critical 
probability of exceedance ( CP ) is 0.2; the true values of magnitude and distance are 

7TM =  and 110TR km=  respectively. The chosen maximum knowledge status (e.g. the 
attenuation relationship conditioned to TM  and TR ) gives [ ] 0.81CP PGA PGA> = , then 
if CP  is equal to 0.2, the right decision would be to alarm in every run. As a consequence 
the probability of missed alarm is zero by design, because the alarm should always be 
issued, and the probability of a false alarm is [ ]CP PGA PGA≤  or 1-0.81 = 0.19. These 
probabilities are intrinsic to the decisional rule and the thresholds set. However, as 
discussed, the EEWS cannot perfectly estimate the hazard curve with TM  and TR  
known. In fact, due to the variability of the estimations (see Figure 7) the value of 
[ ]CP PGA PGA>  is sometimes underestimated and sometimes overestimated. For 
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example the underestimation of [ ]CP PGA PGA>  may lead to not issue the alarm even if 
required and therefore the missed alarm probability is not zero. In particular, when there 
are few triggered stations this underestimation effect is strong, and the missed alarm 
probability is relatively high because when the alarm is not launched (incorrectly) it will 
most likely result is a missed alarm (in fact the true [ ]CP PGA PGA>  is 0.81).  As time 
increases the estimation improves; at 10s since the first trigger 23 station out of 30 have 
measured τ ,  and [ ]CP PGA PGA>   approaches its correct value (0.81) , then the 
missed and false alarm probabilities also tend to their correct values, 0 and 0.19 
respectively. This means that, when all stations are triggered, the systems would work 
according to what designed. This would suggest to alarm when MAP  and FAP  are at their 
a priori values, however this happens only since a certain time, when a sufficient number 
of stations is triggered, this means that alarming in the early seconds of the event gives 
additional lead time but implies to accept some error probability which may be 
intolerable. 

The shape of the curves depends on what both the chosen values of CPGA  and CP  
may be, consequently, they may vary different from those discussed in this example if 
other values of the thresholds are concerned. Nevertheless, given the missed and false 
alarms reference values, calculated by means of the hazard conditioned to TM  and TR , 
the system may be calibrated setting CPGA  and CP  by an appropriate loss function. The 
choice of CPGA  mainly depends on the seismic response of the protected infrastructure 
and on the related damage to structural and non structural elements, while the choice of 

CP  is related to the consequences of a false/missed protection action and on the 
minimum lead time necessary to develop this protection action in a safe manner.     

5. Conclusions 

The study presented in this paper investigated use of Earthquake Early Warning 
Systems for real-time decision making and seismic risk management. The information 
provided by the seismic network on magnitude and source-to-site distance, on a 
developing event, may be treated as in the classic hazard analysis which is the basis to 
obtain a prediction of the required structural or non structural performance. The approach 
has been tested simulating the Campanian early warning system implementing recent 
advances of real-time seismology in a probabilistic framework. Results indicate that the 
PSHA, conditioned to the EEWS measures, correctly approximates the hazard computed 
if the magnitude and distance would be deterministically known, which is the maximum 
level of knowledge. The residual variability may be reduced adopting more efficient 
estimation methods (i.e. regionally calibrated relationships or different inferential 
strategies) and/or, if possible, designing a more dense seismic network.  

While real-time seismic risk analysis seems the way to use all the information 
provided by the Earthquake Early Warning System, on the other hand the prediction 
involves significant uncertainty which cannot be neglected because it may result in a low 
efficiency of hybrid EEWS in respect to site-specific systems. Decisional rule and alarm 
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thresholds have intrinsic missed and false alarm probabilities which should be set 
according to appropriate loss functions related to the system to protect. Simulations, by 
means of time dependent curves, show how the rates of error in decision evolve, with 
time approaching to their design values as the number of triggered stations increases. 
Such curves may be used for risk management optimizing the trade off between the 
probability of wrong decisions and the available lead time for risk reduction actions. 
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