229 research outputs found

    Advances in the theory of III-V Nanowire Growth Dynamics

    Get PDF
    Nanowire (NW) crystal growth via the vapour_liquid_solid mechanism is a complex dynamic process involving interactions between many atoms of various thermodynamic states. With increasing speed over the last few decades many works have reported on various aspects of the growth mechanisms, both experimentally and theoretically. We will here propose a general continuum formalism for growth kinetics based on thermodynamic parameters and transition state kinetics. We use the formalism together with key elements of recent research to present a more overall treatment of III_V NW growth, which can serve as a basis to model and understand the dynamical mechanisms in terms of the basic control parameters, temperature and pressures/beam fluxes. Self-catalysed GaAs NW growth on Si substrates by molecular beam epitaxy is used as a model system.Comment: 63 pages, 25 figures and 4 tables. Some details are explained more carefully in this version aswell as a new figure is added illustrating various facets of a WZ crysta

    Quantum Time and Spatial Localization: An Analysis of the Hegerfeldt Paradox

    Full text link
    Two related problems in relativistic quantum mechanics, the apparent superluminal propagation of initially localized particles and dependence of spatial localization on the motion of the observer, are analyzed in the context of Dirac's theory of constraints. A parametrization invariant formulation is obtained by introducing time and energy operators for the relativistic particle and then treating the Klein-Gordon equation as a constraint. The standard, physical Hilbert space is recovered, via integration over proper time, from an augmented Hilbert space wherein time and energy are dynamical variables. It is shown that the Newton-Wigner position operator, being in this description a constant of motion, acts on states in the augmented space. States with strictly positive energy are non-local in time; consequently, position measurements receive contributions from states representing the particle's position at many times. Apparent superluminal propagation is explained by noting that, as the particle is potentially in the past (or future) of the assumed initial place and time of localization, it has time to propagate to distant regions without exceeding the speed of light. An inequality is proven showing the Hegerfeldt paradox to be completely accounted for by the hypotheses of subluminal propagation from a set of initial space-time points determined by the quantum time distribution arising from the positivity of the system's energy. Spatial localization can nevertheless occur through quantum interference between states representing the particle at different times. The non-locality of the same system to a moving observer is due to Lorentz rotation of spatial axes out of the interference minimum.Comment: This paper is identical to the version appearing in J. Math. Phys. 41; 6093 (Sept. 2000). The published version will be found at http://ojps.aip.org/jmp/. The paper (40 page PDF file) has been completely revised since the last posting to this archiv

    Covariance properties and regularization of conserved currents in tetrad gravity

    Get PDF
    We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.Comment: 36 pages, Revtex, no figures; small changes, published versio

    Differential Expression of Melanopsin Isoforms Opn4L and Opn4S during Postnatal Development of the Mouse Retina

    Get PDF
    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development

    Expression Analysis of PAC1-R and PACAP Genes in Zebrafish Embryos

    Get PDF
    This study describes the expression of the pituitary adenylate cyclase-activating polypeptide (PACAP1 and PACAP2) and PAC1 receptor genes (PAC1a-R and PAC1b-R) in the brain of zebrafish (Danio rerio) during development. In situ hybridization of the 24- and 48-hpf embryos revealed that PACAP genes were expressed in the telencephalon, the diencephalon, the rhombencephalon, and the neurons in the dorsal part of the spinal cord. PACAP2 mRNA appears to be the most abundant form during brain development. The two PAC1-R subtypes showed a similar expression pattern: mRNAs were detected in the forebrain, the thalamus, and the rhombencephalon. However, in the tectum, only PAC1b-R gene was detected. These results suggest that, in fish, PACAP may play a role in brain development
    corecore