200 research outputs found

    Ground-based remote sensing of an elevated forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry

    Get PDF
    On 30 August 2009, intense forest fires in interior British Columbia (BC) coupled with winds from the east and northeast resulted in transport of a broad forest fire plume across southwestern BC. The physico-chemical and optical characteristics of the plume as observed from Saturna Island (AERONET), CORALNet-UBC and the Whistler Mountain air chemistry facility were consistent with forest fire plumes that have been observed elsewhere in continental North America. However, the importance of three-dimensional transport in relation to the interpretation of mountaintop chemistry observations is highlighted on the basis of deployment of both a <i>CL31</i> ceilometer and a single particle mass spectrometer (SPMS) in a mountainous setting. The SPMS is used to identify the biomass plume based on levoglucosan and potassium markers. Data from the SPMS are also used to show that the biomass plume was correlated with nitrate, but not correlated with sulphate or sodium. This study not only provides baseline measurements of biomass burning plume physico-chemical characteristics in western Canada, but also highlights the importance of lidar remote sensing methods in the interpretation of mountaintop chemistry measurements

    Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B

    Get PDF
    International audienceThe meteorology and physico-chemical characteristics of aerosol associated with two new cases of long range dust transport affecting western Canada during spring 2006 are described. Each event showed enhancements of both sulfate aerosol and crustal material of Asian origin. However, the events were of quite different character and demonstrate the highly variable nature of such events. The April event was a significant dust event with moderate sulfate enhancement while the May event was a weak dust event with very significant sulfate enhancement. The latter event was interesting in the sense that it was of short duration and was quickly followed by significant enhancement of organic material likely of regional origin. Comparison of these two events with other documented cases extending back to 1993, suggests that all dust events show coincident enhancements of sulfate and crustal aerosol. However, events vary across a wide continuum based on the magnitude of aerosol enhancements and their sulfate to calcium ratios. At one extreme, events are dominated by highly significant crustal enhancements (e.g. the well-documented 1998 and 2001 "dust" events) while at the other are events with some dust transport, but where sulfate enhancements are of very high magnitude (e.g. the 1993 event at Crater Lake and the 15 May 2006 event at Whistler). Other events represent a "mix". It is likely that this variability is a function of the comparative strengths of the dust and anthropogenic SO2 sources, the transport pathway and in particular the extent to which dust is transported across industrial SO2 sources, and finally, meteorological and chemical processes

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Impacts of an intense wildfire smoke episode on surface radiation, energy and carbon fluxes in southwestern British Columbia, Canada

    Get PDF
    A short, but severe, wildfire smoke episode in July 2015, with an aerosol optical depth (AOD) approaching 9, is shown to strongly impact radiation budgets across four distinct land-use types (forest, field, urban and wetland). At three of the sites, impacts on the energy balance are also apparent, while the event also appears to elicit an ecosystem response with respect to carbon fluxes at the wetland and a forested site. Greatest impacts on radiation and energy budgets were observed at the forested site where the role of canopy architecture and the complex physiological responses to an increase in diffuse radiation were most important. At the forest site, the arrival of smoke reduced both sensible and latent heat flux substantially but also lowered sensible heat flux more than the latent heat flux. With widespread standing water, and little physiological control on evapotranspiration, the impacts on the partitioning of turbulent fluxes were modest at the wetland compared to the physiologically dominated fluxes at the forested site. Despite the short duration and singular nature of the event, there was some evidence of a diffuse radiation fertilization effect when AOD was near or below 2. With lighter smoke, both the wetland and forested site appeared to show enhanced photosynthetic activity (a greater sink for carbon dioxide). However, with dense smoke, the forested site was a strong carbon source. Given the extensive forest cover in the Pacific Northwest and the growing importance of forest fires in the region, these results suggest that wildfire aerosol during the growing season potentially plays an important role in the regional ecosystem response to smoke and ultimately the carbon budget of the region.</p

    Visible Light Communication Using a Blue GaN μLED and Fluorescent Polymer Color Converter

    Get PDF
    This letter presents a novel technique to achieve high-speed visible light communication (VLC) using white light generated by a blue GaN mu LED and a yellow fluorescent copolymer. We generated white light suitable for room illumination by optimizing the ratio between the blue electroluminescence of the mu LED and yellow photoluminescence of the copolymer color converter. Taking advantage of the components' high bandwidth, we demonstrated 1.68 Gb/s at a distance of 3 cm (at 240 lx illumination). To the best of our knowledge, this is the fastest white light VLC results using a single blue LED/color converter combination.PostprintPeer reviewe

    Leaching as a pretreatment process to complement torrefaction in improving co-firing characteristics of Jatropha curcas seed cake

    Get PDF
    The presence of certain inorganic elements in biomass causes issues such as slagging, fouling and corrosion when co-firing with coal for power generation. In this work, the efficacy of leaching to remove these elements from Jatropha curcas seed cake was investigated. Leaching of both untorrefied and torrefied seed cakes was carried out in Milli-Q water at temperatures of 20, 35 and 50 °C. At 20 °C, the two critical elements, potassium and chlorine, decreased by as much as 85 and 97 %, respectively. Leaching at higher temperatures was only beneficial for the more intensely torrefied biomass, since they were more resistant to leaching. The electrical conductivity and ion content of the leachates were measured, as were the inorganic elemental content, dry ash content, volatile matter content and higher heating value (HHV) of the solid seed cake. A secondary benefit of the leaching was an increase in the HHV by up to 10 %
    corecore