20,453 research outputs found

    Suspensions Thermal Noise in the LIGO Gravitational Wave Detector

    Full text link
    We present a calculation of the maximum sensitivity achievable by the LIGO Gravitational wave detector in construction, due to limiting thermal noise of its suspensions. We present a method to calculate thermal noise that allows the prediction of the suspension thermal noise in all its 6 degrees of freedom, from the energy dissipation due to the elasticity of the suspension wires. We show how this approach encompasses and explains previous ways to approximate the thermal noise limit in gravitational waver detectors. We show how this approach can be extended to more complicated suspensions to be used in future LIGO detectors.Comment: 28 pages, 13 figure

    Many-body effects in doped graphene on a piezoelectric substrate

    Full text link
    We investigate the many-body properties of graphene on top of a piezoelectric substrate, focusing on the interaction between the graphene electrons and the piezoelectric acoustic phonons. We calculate the electron and phonon self-energies as well as the electron mobility limited by the substrate phonons. We emphasize the importance of the proper screening of the electron-phonon vertex and discuss the various limiting behaviors as a function of electron energy, temperature, and doping level. The effect on the graphene electrons of the piezoelectric acoustic phonons is compared with that of the intrinsic deformation acoustic phonons of graphene. Substrate phonons tend to dominate over intrinsic ones for low doping levels at high and low temperatures.Comment: 13 pages, 8 figure

    A Novel Multi-parameter Family of Quantum Systems with Partially Broken N-fold Supersymmetry

    Get PDF
    We develop a systematic algorithm for constructing an N-fold supersymmetric system from a given vector space invariant under one of the supercharges. Applying this algorithm to spaces of monomials, we construct a new multi-parameter family of N-fold supersymmetric models, which shall be referred to as "type C". We investigate various aspects of these type C models in detail. It turns out that in certain cases these systems exhibit a novel phenomenon, namely, partial breaking of N-fold supersymmetry.Comment: RevTeX 4, 28 pages, no figure

    Charge control in laterally coupled double quantum dots

    Get PDF
    We investigate the electronic and optical properties of InAs double quantum dots grown on GaAs (001) and laterally aligned along the [110] crystal direction. The emission spectrum has been investigated as a function of a lateral electric field applied along the quantum dot pair mutual axis. The number of confined electrons can be controlled with the external bias leading to sharp energy shifts which we use to identify the emission from neutral and charged exciton complexes. Quantum tunnelling of these electrons is proposed to explain the reversed ordering of the trion emission lines as compared to that of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com

    The Black Hole Binary Nova Scorpii 1994 (GRO J1655-40): An improved chemical analysis

    Full text link
    The chemical analysis of secondary stars of low mass X-ray binaries provides an opportunity to study the formation processes of compact objects, either black holes or neutron stars. Following the discovery of overabundances of α\alpha-elements in the HIRES/Keck spectrum of the secondary star of Nova Scorpii 1994 (Israelian et al. 1999), we obtained UVES/VLT high-resolution spectroscopy with the aim of performing a detailed abundance analysis of this secondary star. Using a χ2\chi2-minimization procedure and a grid of synthetic spectra, we derive the stellar parameters and atmospheric abundances of O, Mg, Al, Ca, Ti, Fe and Ni, using a new UVES spectrum and the HIRES spectrum.The abundances of Al, Ca, Ti, Fe and Ni seem to be consistent with solar values, whereas Na, and especially O, Mg, Si and S are significantly enhanced in comparison with Galactic trends of these elements. A comparison with spherically and non-spherically symmetric supernova explosion models may provide stringent constraints to the model parameters as mass-cut and the explosion energy, in particular from the relative abundances of Si, S, Ca, Ti, Fe and Ni. Most probably the black hole in this system formed in a hypernova explosion of a 30--35 \Msun progenitor star with a mass-cut in the range 2--3.5 \Msun. However, these models produce abundances of Al and Na almost ten times higher than the observed values.Comment: New Accepted version for publication in Astronomy and Astrophysics Table 2: Correcte

    Combinatorics of lattice paths with and without spikes

    Get PDF
    We derive a series of results on random walks on a d-dimensional hypercubic lattice (lattice paths). We introduce the notions of terse and simple paths corresponding to the path having no backtracking parts (spikes). These paths label equivalence classes which allow a rearrangement of the sum over paths. The basic combinatorial quantities of this construction are given. These formulas are useful when performing strong coupling (hopping parameter) expansions of lattice models. Some applications are described.Comment: Latex. 25 page
    corecore