70 research outputs found

    Proof-theoretic semantics, a problem with negation and prospects for modality

    Get PDF
    This paper discusses proof-theoretic semantics, the project of specifying the meanings of the logical constants in terms of rules of inference governing them. I concentrate on Michael Dummett’s and Dag Prawitz’ philosophical motivations and give precise characterisations of the crucial notions of harmony and stability, placed in the context of proving normalisation results in systems of natural deduction. I point out a problem for defining the meaning of negation in this framework and prospects for an account of the meanings of modal operators in terms of rules of inference

    General-elimination stability

    Get PDF
    General-elimination harmony articulates Gentzen's idea that the elimination-rules are justified if they infer from an assertion no more than can already be inferred from the grounds for making it. Dummett described the rules as not only harmonious but stable if the E-rules allow one to infer no more and no less than the I-rules justify. Pfenning and Davies call the rules locally complete if the E-rules are strong enough to allow one to infer the original judgement. A method is given of generating harmonious general-elimination rules from a collection of I-rules. We show that the general-elimination rules satisfy Pfenning and Davies' test for local completeness, but question whether that is enough to show that they are stable. Alternative conditions for stability are considered, including equivalence between the introduction- and elimination-meanings of a connective, and recovery of the grounds for assertion, finally generalizing the notion of local completeness to capture Dummett's notion of stability satisfactorily. We show that the general-elimination rules meet the last of these conditions, and so are indeed not only harmonious but also stable.Publisher PDFPeer reviewe

    Insights into the Molecular Basis of L-Form Formation and Survival in Escherichia coli

    Get PDF
    L-forms have been shown to occur among many species of bacteria and are suspected to be involved in persistent infections. Since their discovery in 1935, numerous studies characterizing L-form morphology, growth, and pathogenic potential have been conducted. However, the molecular mechanisms underlying the formation and survival of L-forms remain unknown. Using unstable L-form colonies of Escherichia coli as a model, we performed genome-wide transcriptome analysis and screened a deletion mutant library to study the molecular mechanisms involved in formation and survival of L-forms. Microarray analysis of L-form versus classical colonies revealed many up-regulated genes of unknown function as well as multiple over-expressed stress pathways shared in common with persister cells and biofilms. Mutant screens identified three groups of mutants which displayed varying degrees of defects in L-form colony formation. Group 1 mutants, which showed the strongest defect in L-form colony formation, belonged to pathways involved in cell envelope stress, DNA repair, iron homeostasis, outer membrane biogenesis, and drug efflux/ABC transporters. Four (Group 1) mutants, rcsB, a positive response regulator of colanic acid capsule synthesis, ruvA, a recombinational junction binding protein, fur, a ferric uptake regulator and smpA a small membrane lipoprotein were selected for complementation. Complementation of the mutants using a high-copy overexpression vector failed, while utilization of a low-copy inducible vector successfully restored L-form formation. This work represents the first systematic genetic evaluation of genes and pathways involved in the formation and survival of unstable L-form bacteria. Our findings provide new insights into the molecular mechanisms underlying L-form formation and survival and have implications for understanding the emergence of antibiotic resistance, bacterial persistence and latent infections and designing novel drugs and vaccines

    Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials

    Get PDF
    The effects of atmospheric nitrogen deposition (Ndep_{dep}) on carbon (C) sequestration in forests have often been assessed by relating differences in productivity to spatial variations of Ndep_{dep} across a large geographic domain. These correlations generally suffer from covariation of other confounding variables related to climate and other growth-limiting factors, as well as large uncertainties in total (dry+wet) reactive nitrogen (Nr_{r}) deposition.We propose a methodology for untangling the effects of Ndep_{dep} from those of meteorological variables, soil water retention capacity and stand age, using a mechanistic forest growth model in combination with eddy covariance CO2_{2} exchange fluxes from a Europe-wide network of 22 forest flux towers. Total Nr_{r} deposition rates were estimated from local measurements as far as possible. The forest data were compared with data from natural or semi-natural, non-woody vegetation sites. The response of forest net ecosystem productivity to nitrogen deposition (dNEP= dNdep_{dep}) was estimated after accounting for the effects on gross primary productivity (GPP) of the co-correlates by means of a meta-modelling standardization procedure, which resulted in a reduction by a factor of about 2 of the uncorrected, apparent dGPP/dNdep_{dep} value. This model-enhanced analysis of the C and Ndep_{dep} flux observations at the scale of the European network suggests a mean overall dNEP/dNdep_{dep} response of forest lifetime C sequestration to Ndep_{dep} of the order of 40–50 g C per g N, which is slightly larger but not significantly different from the range of estimates published in the most recent reviews. Importantly, patterns of gross primary and net ecosystem productivity versus Ndep_{dep} were non-linear, with no further growth responses at high Ndep_{dep} levels (Ndep_{dep} >2.5–3 gNm2^{-2} yr1^{-1}) but accompanied by increasingly large ecosystem N losses by leaching and gaseous emissions. The reduced increase in productivity per unit N deposited at high Ndep_{dep} levels implies that the forecast increased Nr_{r} emissions and increased Ndep levels in large areas of Asia may not positively impact the continent’s forest CO2_{2} sink. The large level of unexplained variability in observed carbon sequestration efficiency (CSE) across sites further adds to the uncertainty in the dC/dN response

    Evidence of Weak Habitat Specialisation in Microscopic Animals

    Get PDF
    Macroecology and biogeography of microscopic organisms (any living organism smaller than 2 mm) are quickly developing into fruitful research areas. Microscopic organisms also offer the potential for testing predictions and models derived from observations on larger organisms due to the feasibility of performing lab and mesocosm experiments. However, more empirical knowledge on the similarities and differences between micro- and macro-organisms is needed to ascertain how much of the results obtained from the former can be generalised to the latter. One potential misconception, based mostly on anedoctal evidence rather than explicit tests, is that microscopic organisms may have wider ecological tolerance and a lower degree of habitat specialisation than large organisms. Here we explicitly test this hypothesis within the framework of metacommunity theory, by studying host specificify in the assemblages of bdelloid rotifers (animals about 350 µm in body length) living in different species of lichens in Sweden. Using several regression-based and ANOVA analyses and controlling for both spatial structure and the kind of substrate the lichen grow over (bark vs rock), we found evidence of significant but weak species-specific associations between bdelloids and lichens, a wide overlap in species composition between lichens, and wide ecological tolerance for most bdelloid species. This confirms that microscopic organisms such as bdelloids have a lower degree of habitat specialisation than larger organisms, although this happens in a complex scenario of ecological processes, where source-sink dynamics and geographic distances seem to have no effect on species composition at the analysed scale

    Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate

    Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling

    Get PDF
    The impact of atmospheric reactive nitrogen (Nr_{r}) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr_{r} deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr_{r} deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr_{r} inputs and losses, these data were also combined with in situ flux measurements of NO, N2_{2}O and CH4_{4} fluxes; soil NO3_{3}̅ leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm2^{-2} yr1^{-1} at total wet+dry inorganic Nr_{r} deposition rates (Ndep_{dep}) of 0.3 to 4.3 gNm2^{-2} yr1^{-1} and from -4 to 361 g Cm2^{-2} yr1^{-1} at Ndep_{dep} rates of 0.1 to 3.1 gNm2^{-2} yr1^{-1} in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2_{2} exchange, while CH4_{4} and N2_{2}O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep_{dep} where Nr_{r} leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2_{2} losses by denitrification. Nitrogen losses in the form of NO, N2_{2}O and especially NO3_{3}̅ were on average 27%(range 6 %–54 %) of Ndep_{dep} at sites with Ndep_{dep} 3 gNm2^{-2} yr1^{-1}. Such large levels of Nr_{r} loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr_{r} deposition up to 2–2.5 gNm2^{-2} yr1^{-1}, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep_{dep} levels (> 2.5 gNm2^{-2} yr1^{-1}), where inorganic Nr_{r} losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep_{dep} levels was partly the result of geographical cross-correlations between Ndep_{dep} and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep_{dep}
    corecore