81 research outputs found

    Kinetics and mechanism of synthetic CoS oxidation process

    Get PDF
    The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method

    Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites

    Get PDF
    Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where UIV predominates. Here we establish that mineral surfaces can stabilize the majority of U as adsorbed UIV species following reduction of UVI. Using X-ray absorption spectroscopy and electron imaging analysis, we find that at low surface loading, UIV forms inner-sphere complexes with two metal oxides, TiO2 (rutile) and Fe3O4 (magnetite) (at <1.3 U nm–2 and <0.037 U nm–2, respectively). The uraninite (UO2) form of UIV predominates only at higher surface loading. UIV–TiO2 complexes remain stable for at least 12 months, and UIV–Fe3O4 complexes remain stable for at least 4 months, under anoxic conditions. Adsorbed UIV results from UVI reduction by FeII or by the reduced electron shuttle AH2QDS, suggesting that both abiotic and biotic reduction pathways can produce stable UIV–mineral complexes in the subsurface. The observed control of high-affinity mineral surface sites on UIV speciation helps explain the presence of nonuraninite UIV in sediments and has important implications for U transport modeling

    Incorporation of uranium into hematite during crystallization from ferrihydrite

    Get PDF
    Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite the results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. © 2014 American Chemical Society

    Characteristics of specialists treating hypothyroid patients: the “THESIS” collaborative

    Get PDF
    Copyright \ua9 2023 Žarković, Attanasio, Nagy, Negro, Papini, Perros, Cohen, Akarsu, Alevizaki, Ayvaz, Bednarczuk, Berta, Bodor, Borissova, Boyanov, Buffet, Burlacu, Ćirić, D\uedez, Dobnig, Fadeyev, Field, Fliers, Fr\uf8lich, F\ufchrer, Galofr\ue9, Hakala, Jiskra, Kopp, Krebs, Kršek, Kužma, Lantz, Laz\ufarov\ue1, Leenhardt, Luchytskiy, McGowan, Melo, Metso, Moran, Morgunova, Mykola, Beleslin, Niculescu, Perić, Planck, Poiana, Puga, Robenshtok, Rosselet, Ruchala, Riis, Shepelkevich, Unuane, Vardarli, Visser, Vrionidou, Younes, Yurenya and Heged\ufcs.Introduction: Thyroid specialists influence how hypothyroid patients are treated, including patients managed in primary care. Given that physician characteristics influence patient care, this study aimed to explore thyroid specialist profiles and associations with geo-economic factors. Methods: Thyroid specialists from 28 countries were invited to respond to a questionnaire, Treatment of Hypothyroidism in Europe by Specialists: an International Survey (THESIS). Geographic regions were defined according to the United Nations Statistics Division. The national economic status was estimated using World Bank data on the gross national income per capita (GNI per capita). Results: 5,695 valid responses were received (response rate 33\ub70%). The mean age was 49 years, and 65\ub70% were female. The proportion of female respondents was lowest in Northern (45\ub76%) and highest in Eastern Europe (77\ub72%) (p &lt;0\ub7001). Respondent work volume, university affiliation and private practice differed significantly between countries (p&lt;0\ub7001). Age and GNI per capita were correlated inversely with the proportion of female respondents (p&lt;0\ub701). GNI per capita was inversely related to the proportion of respondents working exclusively in private practice (p&lt;0\ub7011) and the proportion of respondents who treated &gt;100 patients annually (p&lt;0\ub701). Discussion: THESIS has demonstrated differences in characteristics of thyroid specialists at national and regional levels, strongly associated with GNI per capita. Hypothyroid patients in middle-income countries are more likely to encounter female thyroid specialists working in private practice, with a high workload, compared to high-income countries. Whether these differences influence the quality of care and patient satisfaction is unknown, but merits further study

    Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes

    Get PDF
    Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes
    corecore