136 research outputs found
In search of the desired sustainable tourism: a review of Life Cycle Assessment (LCA) tourism studies
Sustainable tourism should be promoted as a new system for the sustainable management of resources from a socioeconomic and environmental point of view. For this purpose, it is necessary to develop a tool capable of assessing the impacts associated with each of the stages of the sector and to identify which actions are currently being addressed in the tourism sector in order to achieve the desired sustainability in the sector. This timely study aims to describe the current framework of life cycle assessment (LCA) and its application to the tourism sector. To address these questions, the geographical distribution, the temporal evolution of the publications, as well as the most relevant characteristics of the tourism industry articles were evaluated such as the functional unit and system boundaries considered. The study identifies key recommendations on the progression of LCA for this increasingly important sustaining tourism sector. As important results, it stands out that 94% of articles focused on LCA methodology were from the last decade and almost 26% of the articles reviewed cover sustainable tourism term, considering environmental, social and economic aspects. Specifically, LCA is a highly effective tool capable of assessing direct and indirect carbon emissions at all stages of the activity as well as the socioeconomic and environmental impacts generated in the tourism sector. This review showed that the most common environmental indicator in the LCA methodology is the carbon footprint. COVID-19 pandemic is also an object of discussion in the framework of the sustainable tourism together with advocating support for the eco-labelling and digitalisation of the tourism experiences as valuable tools to minimize environmental negativities, to promote mechanisms to access green markets and to frame successful synergies.This research was funded by the INTERREG SUDOE Programme, grant number GREENTOUR: Circular Economy and Sustainable Tourism in Destinations of the SUDOE space (SOE4/P5/E1089). Furthermore, the authors are grateful to the anonymous reviewers whose comments and corrections have significantly improved the quality of this contribution
Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of mycobacterium tuberculosis Beijing isolates
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing
Epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole for six Candida species as determined by the colorimetric Sensititre YeastOne method
In the absence of clinical breakpoints (CBP), epidemiological cutoff values (ECVs) are useful to separate wild-type (WT) isolates (without mechanisms of resistance) from non-WT isolates (those that can harbor some resistance mechanisms), which is the goal of susceptibility tests. Sensititre YeastOne (SYO) is a widely used method to determine susceptibility of Candida spp. to antifungal agents. The CLSI CBP have been established, but not for the SYO method. The ECVs for four azoles, obtained using MIC distributions determined by the SYO method, were calculated via five methods (three statistical methods and based on the MIC50 and modal MIC). Respectively, the median ECVs (in mg/liter) of the five methods for fluconazole, itraconazole, posaconazole, and voriconazole (in parentheses: the percentage of isolates inhibited by MICs equal to or less than the ECVs; the number of isolates tested) were as follows: 2 (94.4%; 944), 0.5 (96.7%; 942), 0.25 (97.6%; 673), and 0.06 (96.7%; 849) for Candida albicans; 4 (86.1%; 642), 0.5 (99.4%; 642), 0.12 (93.9%; 392), and 0.06 (86.9%; 559) for C. parapsilosis; 8 (94.9%; 175), 1 (93.7%; 175), 2 (93.6%; 125), and 0.25 (90.4%; 167) for C. tropicalis; 128 (98.6%; 212), 4 (95.8%; 212), 4 (96.0%; 173), and 2 (98.5; 205) for C. glabrata; 256 (100%; 53), 1 (98.1%; 53), 1 (100%; 33), and 1 (97.9%; 48) for C. krusei; 4 (89.2%; 93), 0.5 (100%; 93), 0.25 (100%; 33), and 0.06 (87.7%; 73) for C. orthopsilosis. All methods included =94% of isolates and yielded similar ECVs (within 1 dilution). These ECVs would be suitable for monitoring emergence of isolates with reduced susceptibility by using the SYO method
Towards a Water-Energy-Food (WEF) nexus index: A review of nutrient profile models as a fundamental pillar of food and nutrition security
The Water-Energy-Food (WEF) nexus approach should be promoted as a tool for sustainable management of resources through the interconnection of these three fundamental pillars. Particularly, food security must ensure healthy and balanced diets for everyone, but selecting individual indicators to assess all slants covered by this element is not an easy task. Hence, the objective of this paper is two-fold, to review nutrient profiling (NP) models that allow to categorize foods and evaluate diets based on their nutritional quality, and to choose the most appropriate model to be used within a WEF nexus index. To address this issue, a total of 159 documents were assessed, appraising the geographic distribution, and time evolution of the publications, as well as the characteristics and potential applications of the NP systems. The review concludes that the NRF9.3. model is the most liable option to be used in a WEF nexus index, presenting the best characteristics by means of the definition of scores and thresholds, and the use of an 'across-the-board' criteria and a reference quantity of 100 kcal, alongside offering higher ability to assess diets and foods than the other competitive model (HEI) through the evaluation of nutrients to encourage instead of foods. A secondary outcome of the review is the identification of the NP models as a useful tool to enable institutions with information to establish policies in the field of public health and facilitating the decision-making process according to the current healthy claimsThe authors are grateful for the funding of the Spanish Ministry of Science and Innovation through the KAIROS-BIOCIR project (PID2019-104925RB) (AEO/FEDER, UE) and of the Interreg Atlantic Area through the NEPTUNUS project (EAPA_576/2018). Daniel Hoehn thanks the Ministry of Economy and Competitiveness of Spanish Government for their financial support via the research fellowship BES-2017-080296. Jorge Cristóbal acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities through the “Beatriz Galindo” grant BEAGAL18/00035
Assessing the environmental impacts of three different types of accommodations in Portugal and Spain by using an LCA approach
The tourism industry, affected by COVID-19, must reduce greenhouse gas emissions. This study evaluated the environmental impact of three hotels in coastal and mountainous regions of Spain and Portugal using Life Cycle Assessment (LCA). Data was gathered via surveys in the Greentour tool. Results indicate that the 2-star hotel (focused on cultural-urban tourism) has the highest impacts in most categories, except for CC, FRD, and POF indicators. The 3-star hotel (beach tourism) contributes the most to CC and FRD indicators, while the hostel (nature-religious tourism) has the highest value in the POF indicator. LCA findings reveal that diesel consumption in the hostel and electricity usage in both the 2-star and 3-star hotels are major contributors to environmental impacts across various categories. Overall, evidence suggests that fossil fuel and electricity usage significantly affect tourism activities environmentally. Interestingly, this study highlights that a 2-star hotel can have a higher carbon footprint (CC indicator) compared to a 3-star hotel, challenging the notion that higher star ratings imply lower environmental impact.This research was funded by the INTERREG SUDOE Programme, grant number GREENTOUR: Circular Economy and Sustainable Tourism in Destinations of the SUDOE space (SOE4/P5/E1089)
Looking for answers to food loss and waste management in Spain from a holistic nutritional and economic approach
The generation of food loss and waste (FLW) is a global problem for worldwide politics. About one-third of the food produced ends up in the rubbish before it is consumed. For this reason, it is essential to design and implement new strategies along the food supply chain (FSC) with the aim of reducing this FLW at each stage. However, not only mass quantification should be considered, but also economic and nutritional performance. The novelty of this study is the definition of a methodology based on the “distance to target” approach by means of multi-objective optimization to evaluate the economic and nutritional cost produced by this FLW. This methodology was applied to the Spanish food basket in 2015. The results revealed that 80% of the total FLW generated in economic and nutritional terms is concentrated in the agricultural production (53.3%) and consumption (26.3%) stages. In the first stages of the FSC, fruits (Dn eq.= 0.7), cereals (Dn eq.= 0.61), and vegetables (Dn eq.= 0.57) were the furthest from the distance target due to the great amount of FLW generated. Moreover, according to the normalized weighted distances obtained from the minimization of economic and nutritional cost, pulses (Dn eq. = 0.05–0.03) and eggs (Dn eq. = 0.02) were the more efficient food categories. The methodology described in this study proposes a single index to quantify the economic and nutritional cost of different food categories to facilitate the decision-making process. This index makes possible the definition of reduction strategies focused on specific food categories and depending on the FSC stage.This research was funded by Spanish Ministry of Science and Competitiveness, grant number CERES-PROCON Project CTM2016-76176 (AEI/FEDER, UE) and KAIROS-BIOCIR Project PID2019-104925RB (AEO/FEDER, UE)
Ephemeris refinement of 21 Hot Jupiter exoplanets with high timing uncertainties
Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 Hot Jupiter exoplanets with the largest timing uncertainty. We collected 120 professional and amateur transit light curves of the targets of interest, observed with 0.3m to 2.2m telescopes, and analyzed them including the timing information of the planets discovery papers. In the case of WASP-117b, we measured a timing deviation compared to the known ephemeris of about 3.5 hours, for HAT-P-29b and HAT-P-31b the deviation amounted to about 2 hours and more. For all targets, the new ephemeris predicts transit timings with uncertainties of less than 6 minutes in the year 2018 and less than 13 minutes until 2025. Thus, our results allow for an accurate scheduling of follow-up observations in the next decade
Stereoscopic disambiguation of vector magnetograms: first applications to SO/PHI-HRT data
Spectropolarimetric reconstructions of the photospheric vector magnetic field
are intrinsically limited by the 180-ambiguity in the orientation of
the transverse component. So far, the removal of such an ambiguity has required
assumptions about the properties of the photospheric field, which makes
disambiguation methods model-dependent. The basic idea is that the unambiguous
line-of-sight component of the field measured from one vantage point will
generally have a non-zero projection on the ambiguous transverse component
measured by the second telescope, thereby determining the ``true'' orientation
of the transverse field. Such an idea was developed and implemented in the
Stereoscopic Disambiguation Method (SDM), which was recently tested using
numerical simulations. In this work we present a first application of the SDM
to data obtained by the High Resolution Telescope (HRT) onboard Solar Orbiter
during the March 2022 campaign, when the angle with Earth was 27 degrees. The
method is successfully applied to remove the ambiguity in the transverse
component of the vector magnetogram solely using observations (from HRT and
from the Helioseismic and Magnetic Imager), for the first time. The SDM is
proven to provide observation-only disambiguated vector magnetograms that are
spatially homogeneous and consistent. A discussion about the sources of error
that may limit the accuracy of the method, and of the strategies to remove them
in future applications, is also presented.Comment: 32 pages, 12 figures, accepted in A&A on 09/07/202
Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA
Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7473G>A (p.=) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of 3 mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that 4 of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease.info:eu-repo/semantics/publishedVersio
Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA
Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to the identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7437G>A) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of three mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that four of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease. clinicaltrials.gov identifier:02869074
- …