5,893 research outputs found

    High-harmonic generation from arbitrarily oriented diatomic molecules including nuclear motion and field-free alignment

    Get PDF
    We present a theoretical model of high-harmonic generation from diatomic molecules. The theory includes effects of alignment as well as nuclear motion and is used to predict results for N2_2, O2_2, H2_2 and D2_2. The results show that the alignment dependence of high-harmonics is governed by the symmetry of the highest occupied molecular orbital and that the inclusion of the nuclear motion in the theoretical description generally reduces the intensity of the harmonic radiation. We compare our model with experimental results on N2_2 and O2_2, and obtain very good agreement.Comment: 12 pages, 8 figures, 2 tables; legends revised on Figs. 1,3,4,6 and

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=130T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T30T\sim 30 MeV, though for higher AA-values it happens so at T20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho

    Semiclassical two-step model for strong-field ionization

    Get PDF
    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte-Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schr\"odinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fan-like interference patterns in the low-energy part of the two-dimensional momentum distributions as well as the modulations in the photoelectron angular distributions.Comment: 31 pages, 7 figure

    Dynamical evolution of the Universe in the quark-hadron phase transition and possible nugget formation

    Get PDF
    We study the dynamics of first-order phase transition in the early Universe when it was 1050μs10-50 \mu s old with quarks and gluons condensing into hadrons. We look at how the Universe evolved through the phase transition in small as well as large super cooling scenario, specifically exploring the formation of quark nuggets and their possible survival. The nucleation of the hadron phase introduces new distance scales in the Universe, which we estimate along with the hadron fraction, temperature, nucleation time etc. It is of interest to explore whether there is a relic signature of this transition in the form of quark nuggets which might be identified with the recently observed dark objects in our galactic halo and account for the Dark Matter in the Universe at present.Comment: LaTeX file with four postscript figure

    The structure of 2D semi-simple field theories

    Full text link
    I classify all cohomological 2D field theories based on a semi-simple complex Frobenius algebra A. They are controlled by a linear combination of kappa-classes and by an extension datum to the Deligne-Mumford boundary. Their effect on the Gromov-Witten potential is described by Givental's Fock space formulae. This leads to the reconstruction of Gromov-Witten invariants from the quantum cup-product at a single semi-simple point and from the first Chern class, confirming Givental's higher-genus reconstruction conjecture. The proof uses the Mumford conjecture proved by Madsen and Weiss.Comment: Small errors corrected in v3. Agrees with published versio

    Rotational cooling of molecules using lamps

    Full text link
    We investigate theoretically the application of tailored incoherent far-infrared fields in combination with laser excitation of a single rovibrational transition for rotational cooling of translationally cold polar diatomic molecules. The cooling schemes are effective on a timescale shorter than typical unperturbed trapping times in ion traps and comparable to obtainable confinement times of neutral molecules.Comment: 5 pages, 2 figure

    Relics of cosmological quark-hadron phase transition

    Get PDF
    We propose that the amplified density fluctuations by the vanishing sound velocity effect during the cosmological quark-hadron phase transition lead to quark-gluon plasma lumps decoupled from the expansion of the universe, which may evolve to quark nuggets (QNs). Assuming power-law spectrum of density fluctuations, we investigate the parameter ranges for the QNs to play the role of baryonic dark matter and give inhomogeneities which could affect big-bang nucleosynthesis within the observational bounds of CMBR anisotropy. The QNs can give the strongest constraint ever found on the spectral index.Comment: REVTEX, 4 pages, 2 eps figure

    Comparison of aerodynamic models for Vertical Axis Wind Turbines

    Get PDF
    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.Aerodynamics, Wind Energy & PropulsionAerospace Engineerin

    Physics and Astrophysics of Strange Quark Matter

    Get PDF
    3-flavor quark matter (strange quark matter; SQM) can be stable or metastable for a wide range of strong interaction parameters. If so, SQM can play an important role in cosmology, neutron stars, cosmic ray physics, and relativistic heavy-ion collisions. As an example of the intimate connections between astrophysics and heavy-ion collision physics, this Chapter gives an overview of the physical properties of SQM in bulk and of small-baryon number strangelets; discusses the possible formation, destruction, and implications of lumps of SQM (quark nuggets) in the early Universe; and describes the structure and signature of strange stars, as well as formation and detection of strangelets in cosmic rays. It is concluded, that astrophysical and laboratory searches are complementary in many respects, and that both should be pursued to test the intriguing possibility of a strange ground state for hadronic matter, and (more generally) to improve our knowledge of the strong interactions.Comment: 45 pages incl. figures. To appear in "Hadrons in Dense Matter and Hadrosynthesis", Lecture Notes in Physics, Springer Verlag (ed. J.Cleymans
    corecore