41 research outputs found

    Small amplitude quasi-breathers and oscillons

    Get PDF
    Quasi-breathers (QB) are time-periodic solutions with weak spatial localization introduced in G. Fodor et al. in Phys. Rev. D. 74, 124003 (2006). QB's provide a simple description of oscillons (very long-living spatially localized time dependent solutions). The small amplitude limit of QB's is worked out in a large class of scalar theories with a general self-interaction potential, in DD spatial dimensions. It is shown that the problem of small amplitude QB's is reduced to a universal elliptic partial differential equation. It is also found that there is the critical dimension, Dcrit=4D_{crit}=4, above which no small amplitude QB's exist. The QB's obtained this way are shown to provide very good initial data for oscillons. Thus these QB's provide the solution of the complicated, nonlinear time dependent problem of small amplitude oscillons in scalar theories.Comment: 24 pages, 19 figure

    Computation of the radiation amplitude of oscillons

    Get PDF
    The radiation loss of small amplitude oscillons (very long-living, spatially localized, time dependent solutions) in one dimensional scalar field theories is computed in the small-amplitude expansion analytically using matched asymptotic series expansions and Borel summation. The amplitude of the radiation is beyond all orders in perturbation theory and the method used has been developed by Segur and Kruskal in Phys. Rev. Lett. 58, 747 (1987). Our results are in good agreement with those of long time numerical simulations of oscillons.Comment: 22 pages, 9 figure

    Mass loss and longevity of gravitationally bound oscillating scalar lumps (oscillatons) in D-dimensions

    Get PDF
    Spherically symmetric oscillatons (also referred to as oscillating soliton stars) i.e. gravitationally bound oscillating scalar lumps are considered in theories containing a massive self-interacting real scalar field coupled to Einstein's gravity in 1+D dimensional spacetimes. Oscillations are known to decay by emitting scalar radiation with a characteristic time scale which is, however, extremely long, it can be comparable even to the lifetime of our universe. In the limit when the central density (or amplitude) of the oscillaton tends to zero (small-amplitude limit) a method is introduced to compute the transcendentally small amplitude of the outgoing waves. The results are illustrated in detail on the simplest case, a single massive free scalar field coupled to gravity.Comment: 23 pages, 2 figures, references on oscillons added, version to appear in Phys. Rev.

    Boson stars and oscillatons in an inflationary universe

    Full text link
    Spherically symmetric gravitationally bound, oscillating scalar lumps (boson stars and oscillatons) are considered in Einstein's gravity coupled to massive scalar fields in 1+D dimensional de Sitter-type inflationary space-times. We show that due to inflation bosons stars and oscillatons lose mass through scalar radiation, but at a rate that is exponentially small when the expansion rate is slow.Comment: 19 pages, 5 figure

    On decay of large amplitude bubble of disoriented chiral condensate

    Get PDF
    The time evolution of initially formed large amplitude bubble of disoriented chiral condensate (DCC) is studied. It is found that the evolution of this object may have a relatively long pre-decay stage. Simple explanation of such delay of the DCC bubble decay is given. This delay is related to the existence of the approximate solutions of multi-soliton type of the corresponding radial sine-Gordon equation in (3+1) dimensions at large bubble radius.Comment: 6 pages, LaTeX, 5 PostScript figure

    Numerical simulation of oscillatons: extracting the radiating tail

    Full text link
    Spherically symmetric, time-periodic oscillatons -- solutions of the Einstein-Klein-Gordon system (a massive scalar field coupled to gravity) with a spatially localized core -- are investigated by very precise numerical techniques based on spectral methods. In particular the amplitude of their standing-wave tail is determined. It is found that the amplitude of the oscillating tail is very small, but non-vanishing for the range of frequencies considered. It follows that exactly time-periodic oscillatons are not truly localized, and they can be pictured loosely as consisting of a well (exponentially) localized nonsingular core and an oscillating tail making the total mass infinite. Finite mass physical oscillatons with a well localized core -- solutions of the Cauchy-problem with suitable initial conditions -- are only approximately time-periodic. They are continuously losing their mass because the scalar field radiates to infinity. Their core and radiative tail is well approximated by that of time-periodic oscillatons. Moreover the mass loss rate of physical oscillatons is estimated from the numerical data and a semi-empirical formula is deduced. The numerical results are in agreement with those obtained analytically in the limit of small amplitude time-periodic oscillatons.Comment: 22 figures, accepted for publication in PR

    Oscillons in dilaton-scalar theories

    Get PDF
    It is shown by both analytical methods and numerical simulations that extremely long living spherically symmetric oscillons appear in virtually any real scalar field theory coupled to a massless dilaton (DS theories). In fact such "dilatonic" oscillons are already present in the simplest non-trivial DS theory -- a free massive scalar field coupled to the dilaton. It is shown that in analogy to the previously considered cases with a single nonlinear scalar field, in DS theories there are also time periodic quasibreathers (QB) associated to small amplitude oscillons. Exploiting the QB picture the radiation law of the small amplitude dilatonic oscillons is determined analytically.Comment: extended discussion on stability, to appear in JHEP, 29 pages, 7 figure

    Catalyzed decay of false vacuum in four dimensions

    Get PDF
    The probability of destruction of a metastable vacuum state by the field of a highly virtual particle with energy EE is calculated for a (3+1) dimensional theory in the leading WKB approximation in the thin-wall limit. It is found that the induced nucleation rate of bubbles, capable of expansion, is exponentially small at any energy. The negative exponential power in the rate reaches its maximum at the energy, corresponding to the top of the barrier in the bubble energy, where it is a finite fraction of the same power in the probability of the spontaneous decay of the false vacuum, i.e. at E=0E=0.Comment: 9 pages (standard LaTeX)+ 3 figures (one figure in LaTeX, two are appended in PostScript). TPI-MINN-92/31-

    Non-Perturbative Production of Multi-Boson States and Quantum Bubbles

    Full text link
    The amplitude of production of nn on-mass-shell scalar bosons by a highly virtual field ϕ\phi is considered in a λϕ4\lambda \phi^4 theory with weak coupling λ\lambda and spontaneously broken symmetry. The amplitude of this process is known to have an n!n! growth when the produced bosons are exactly at rest. Here it is shown that for n1/λn \gg 1/\lambda the process goes through `quantum bubbles', i.e. quantized droplets of a different vacuum phase, which are non-perturbative resonant states of the field ϕ\phi. The bubbles provide a form factor for the production amplitude, which rapidly decreases above the threshold. As a result the probability of the process may be heavily suppressed and may decrease with energy EE as exp(constEa)\exp (-const \cdot E^a), where the power aa depends on the number of space dimensions. Also discussed are the quantized states of bubbles and the amplitudes of their formation and decay.Comment: 20 pages in LaTeX + 3 figures (fugures not included, hardcopy available on request), TPI-MINN-93/20-
    corecore