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Abstract: It is shown by both analytical methods and numerical simulations that ex-

tremely long living spherically symmetric oscillons appear in virtually any real scalar field

theory coupled to a massless dilaton (DS theories). In fact such ”dilatonic” oscillons are

already present in the simplest non-trivial DS theory – a free massive scalar field coupled

to the dilaton. It is shown that in analogy to the previously considered cases with a single

nonlinear scalar field, in DS theories there are also time periodic quasibreathers (QB) as-

sociated to small amplitude oscillons. Exploiting the QB picture the radiation law of the

small amplitude dilatonic oscillons is determined analytically.

Keywords: Nonperturbative Effects, Solitons Monopoles and Instantons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333613187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0906.4160v2
mailto:gfodor@rmki.kfki.hu
http://jhep.sissa.it/stdsearch


Contents

1. Introduction 1

2. The scalar-dilaton system 3

3. The small amplitude expansion 4

3.1 The Schrödinger-Newton equations 5

3.2 Absence of odd ε powers in the expansion 8

3.3 Higher orders in the ε expansion 8

3.4 Free scalar field in 2 < D < 6 dimensions 9

3.5 ε4 order for D = 6 11

3.6 Total energy and dilaton charge of oscillons 12

4. Time evolution of oscillons 12

5. Determination of the energy loss rate 16

5.1 Singularity of the small ε expansion 17

5.2 Fourier mode expansion 17

5.3 Fourier mode equations 19

5.4 ε→ 0 limit near the pole 20

5.5 Order ε corrections near the pole 22

5.6 Extension to the real axis 24

6. Acknowledgments 26

1. Introduction

Long-living, spatially localized classical solutions in field theories containing scalar fields

exhibiting nearly periodic oscillations in time – oscillons – [1]–[16] have attracted consid-

erable interest in the last few years. Oscillons closely resemble ”true” breathers of the

one-dimensional (D = 1) sine-Gordon (SG) theory, which are time periodic and are expo-

nentially localized in space, but unlike true breathers they are continuously losing energy by

radiating slowly. On the other hand oscillons exist for different scalar potentials in various

spatial dimensions, in particular for D = 1, 2, 3. Just like a breather, an oscillon possesses

a spatially well localized “core”, but it also has a “radiative” region outside of the core.

Oscillons appear from rather generic initial data in the course of time evolution in an im-

pressive number of physically relevant theories including the bosonic sector of the standard

model [17]–[20]. Moreover they form in physical processes making them of considerable
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importance [21]–[28]. In a series of papers, [12], [29]–[31], it has been shown that oscillons

can be well described by a special class of exactly time-periodic ”quasibreathers” (QB).

QBs also possess a well localized core in space (just like true breathers) but in addition

they have a standing wave tail whose amplitude is minimized. At this point it is important

to emphasize that there are (infinitely) many time periodic solutions characterized by an

asymptotically standing wave part. In order to select one solution, we impose the condition

that the standing wave amplitude be minimal. This is a physically motivated condition,

which heuristically should single out ”the” solution approximating a true breather as well

as possible, for which this amplitude is identically zero. The amplitude of the standing

wave tail of a QB is closely related to that of the oscillon radiation, therefore its computa-

tion is of prime interest. It is a rather non-trivial problem to compute this amplitude even

in one spatial dimensional scalar theories [32], [30]. In the limit when the core amplitude

is small, we have developed a method to compute the leading part of the exponentially

suppressed tail amplitude for a general class of theories in various dimensions [31].

In this paper we show that oscillons also appear in rather general (real) scalar field

theories coupled to a (massless) dilaton field (DS theory). Dilaton fields appear naturally

in low energy effective field theories derived from superstring models [33, 34, 35] and the

study of their effects is of major interest. As the present study shows, the coupling of a

dilaton even to a free massive scalar field, referred to as the dilaton-Klein-Gordon (DKG)

theory, which is the conceivably simplest non-trivial DS theory, has some rather remarkable

consequences. This simple DKG theory already admits QBs and as our numerical investi-

gations show from generic initial data small amplitude oscillons evolve. We concentrate on

solutions with the simplest spatial geometry - spherical symmetry. We do not think that

considering spherically symmetric configurations is a major restriction since non-symmetric

configurations are expected to contain more energy and to evolve into symmetric ones [25].

The dilatonic oscillons are very robust and once formed from the initial data they do not

even seem to radiate their energy, hence their lifetime is extremely long (not even detectable

by our numerical methods).

Our means for constructing dilatonic oscillons will be the small amplitude expansion,

in which the small parameter, ε, determines the difference of oscillation frequency from

the mass threshold. The small amplitude oscillons of the DKG theory appear to be stable

in dimensions D = 3, 4, unstable in D = 5, 6, and their core amplitude is proportional to

ε2. This is to be contrasted to self-interacting scalar theories whose oscillons are stable in

D = 1, 2, unstable in D = 3, and their core amplitude is proportional to ε. The master

equations determining oscillons to leading order in the small amplitude expansion turn out

to be the Schrödinger-Newton (SN) equations. The main analytical result of this paper is

the analytic computation of the amplitude of the standing wave tail of the dilatonic QBs

for any dimension D, and thereby the determination of the radiation law and the lifetime

of small amplitude oscillons in DS theories. The used methods have been developed in

Refs. [32], [36], [37], [30] and [31].

The above results, namely the stability properties and the SN equations playing the

rôle of master equation, show striking similarity to those obtained in the Einstein-Klein-

Gordon (EKG) theory, i.e. for a free massive scalar field coupled to Einstein’s gravity,
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where also stable, long living oscillons (known under the name of oscillating soliton stars,

or more recently oscillatons) have been found and investigated in many papers [38]–[44].

2. The scalar-dilaton system

The action of a scalar-dilaton system is

A =

∫
dt dDx

[
1

2
(∂µϕ)

2 +
1

2
(∂µΦ)

2 − e−2κϕ U(Φ)

]
, (2.1)

where ϕ is the dilaton field and Φ is a scalar field with self interaction potential U(Φ).

The energy corresponding to the action (2.1) can be written as

E =

∫
dDx E , E =

1

2

[
(∂tΦ)

2 + (∂iΦ)
2 + (∂tϕ)

2 + (∂iϕ)
2
]
+ e−2κϕU(Φ) , (2.2)

where E denotes the energy density. In the case of spherical symmetry

E =

∫ ∞

0
dr
πD/2rD−1

Γ(D/2)

[
(∂tΦ)

2 + (∂rΦ)
2 + (∂tϕ)

2 + (∂rϕ)
2 + 2e−2κϕU(Φ)

]
. (2.3)

We assume that the potential can be expanded around its minimum at Φ = 0 as

U(Φ) =

∞∑

k=1

gk
k + 1

Φk+1 , U ′(Φ) =

∞∑

k=1

gkΦ
k , (2.4)

where gk are real constants. For a free massive scalar field with mass m the only nonzero

coefficient is g1 = m2. If g2k = 0 for integer k the potential is symmetric around its

minimum. In that case, as we will see, for periodic configurations the Fourier expansion of

Φ in t will contain only odd, while the expansion of ϕ only even Fourier components. For

spherically symmetric systems the field equations are

−∂
2Φ

∂t2
+
∂2Φ

∂r2
+
D − 1

r

∂Φ

∂r
= e−2κϕ U ′(Φ) , (2.5)

−∂
2ϕ

∂t2
+
∂2ϕ

∂r2
+
D − 1

r

∂ϕ

∂r
= −2κ e−2κϕ U(Φ) . (2.6)

Since g1 = m is intended to be the mass of small excitations of Φ at large distances, we

look for solutions satisfying ϕ → 0 for r → ∞. Finiteness of energy also requires Φ → 0

as r → ∞. Rescaling the coordinates as t → t/m and r → r/m we first set g1 = m2 = 1.

Then redefining ϕ → ϕ/(2κ) and Φ → Φ/(2κ) and appropriately changing the constants

gk we arrange that 2κ = 1. If for some reason we obtain a solution for which ϕ tends to a

nonzero constant at infinity then the dilatation symmetry of the system allows us to shift

ϕ and rescale the coordinates so that it is transformed to a solution satisfying ϕ → 0 for

r → ∞.

An important feature of a localized dilatonic configuration is its dilaton charge, Q. It

can be defined for almost time-periodic spherically symmetric configurations like oscillons

as:

ϕ ≈ Qr2−D for r → ∞ in D 6= 2 (2.7)

ϕ ≈ Q ln r for r → ∞ in D = 2 . (2.8)
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3. The small amplitude expansion

In this section we will construct a finite-energy family of localized small amplitude solutions

of the spherically symmetric field equations (2.5) and (2.6) which oscillate below the mass

threshold [36]. It will be shown that such solutions exist for 2 < D < 6. The subtleties

of the case D = 6 will be dealt with in subsection 3.5. The result of the small amplitude

expansion is an asymptotic series representation of the core region of a quasibreather or

oscillon, but misses a standing or outgoing wave tail whose amplitude is exponentially small

with respect to the core. The amplitude of the tail will be determined in section 5.

We are looking for small amplitude solutions, therefore we expand the scalar fields, ϕ

and Φ, in terms of a parameter ε as

ϕ =

∞∑

k=1

εkϕk , Φ =

∞∑

k=1

εkΦk , (3.1)

and search for functions φk and Φk tending to zero at r → ∞. The size of smooth

configurations is expected to increase for decreasing values of ε, therefore it is natural to

introduce a new radial coordinate by the following rescaling

ρ = εr . (3.2)

In order to allow for the ε dependence of the time-scale of the configurations a new time

coordinate is introduced as

τ = ω(ε)t . (3.3)

Numerical experience shows that the smaller the oscillon amplitude is the closer its fre-

quency becomes to the threshold ω = 1. The function ω(ε) is assumed to be analytic near

ω = 1, and it is expanded as

ω2(ε) = 1 +
∞∑

k=1

εkωk . (3.4)

We note that there is a considerable freedom in choosing different parametrisations of

the small amplitude states, changing the actual form of the function ω(ε). The physical

parameter is not ε but the frequency of the periodic states that will be given by ω. After

the rescalings Eqs. (2.5) and (2.6) take the following form

−ω2∂
2Φ

∂τ2
+ ε2

∂2Φ

∂ρ2
+ ε2

D − 1

ρ

∂Φ

∂ρ
= e−ϕ

(
Φ+

∞∑

k=2

gkΦ
k

)
, (3.5)

−ω2∂
2ϕ

∂τ2
+ ε2

∂2ϕ

∂ρ2
+ ε2

D − 1

ρ

∂ϕ

∂ρ
= −e−ϕ

(
1

2
Φ2 +

∞∑

k=2

gk
k + 1

Φk+1

)
. (3.6)

Substituting the small amplitude expansion (3.1) into (3.5) and (3.6), to leading ε

order we obtain
∂2Φ1

∂τ2
+Φ1 = 0 ,

∂2ϕ1

∂τ2
= 0 . (3.7)
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Since we are looking for solutions which remain bounded in time and since we are free to

shift the origin τ = 0 of the time coordinate, the solution of (3.7) can be written as

Φ1(τ, ρ) = P1(ρ) cos τ , ϕ1(τ, ρ) = p1(ρ) , (3.8)

where P1(ρ) and p1(ρ) are some functions of the rescaled radial coordinate ρ.

The ε2 terms in the expansion of (3.6) yield

∂2ϕ2

∂τ2
=

1

4
P 2
1 [1 + cos(2τ)] . (3.9)

This equation can have a solution for ϕ2 which remains bounded in time only if the time

independent term in the right hand side vanishes, implying P1 = 0 and consequently

Φ1 = 0. Then the solution of (3.9) is ϕ2(τ, ρ) = p2(ρ). The ε
2 terms in (3.5) yield

∂2Φ2

∂τ2
+Φ2 = 0 . (3.10)

Since Φ1 = 0 we are again free to shift the time coordinate, and the solution is Φ2(τ, ρ) =

P2(ρ) cos τ .

The ε3 order terms in the expansion of (3.6) give

∂2ϕ3

∂τ2
=
d2p1
dρ2

+
D − 1

ρ

dp1
dρ

. (3.11)

In order to have a solution for ϕ3(τ, ρ) that remains bounded in time, the right hand side

must be zero, yielding p1(ρ) = p11 + p12ρ
2−D when D 6= 2 and p1(ρ) = p11 + p12 ln ρ for

D = 2, with some constants p11 and p12. Since we look for bounded regular solutions

tending to zero at ρ → ∞, we must have p11 = p12 = 0. As we have already seen that

Φ1 = 0, this means that the small amplitude expansion (3.1) starts with ε2 terms. The

solution of (3.11) is then ϕ3(τ, ρ) = p3(ρ). The ε3 order terms in the expansion of (3.5)

give
∂2Φ3

∂τ2
+Φ3 − ω1P2 cos τ = 0 . (3.12)

This equation can have a solution for Φ3 which remains bounded in time only if the res-

onance term proportional to cos τ vanishes, implying ω1 = 0. After applying an ε3 order

small shift in the time coordinate, the solution of (3.12) is Φ3(τ, ρ) = P3(ρ) cos τ . Contin-

uing to higher orders, the basic frequency sin τ term can always be absorbed by a small

shift in τ . It is important to note that after transforming out the sin τ terms no sin(kτ)

terms will appear in the expansion, implying the time reflection symmetry of Φ and ϕ at

τ = 0.

3.1 The Schrödinger-Newton equations

The ε4 terms in the expansion of (3.5) and (3.6) yield the differential equations

∂2Φ4

∂τ2
+Φ4 =

[
d2P2

dρ2
+
D − 1

ρ

dP2

dρ
+ (p2 + ω2)P2

]
cos τ − 1

2
g2P

2
2 [1 + cos(2τ)] ,(3.13)

∂2ϕ4

∂τ2
=
d2p2
dρ2

+
D − 1

ρ

dp2
dρ

+
1

4
P 2
2 [1 + cos(2τ)] . (3.14)
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The function Φ4(τ, ρ) and ϕ4(τ, ρ) can remain bounded only if the cos τ resonance terms

in (3.13) and the time independent terms in (3.14) vanish,

d2P2

dρ2
+
D − 1

ρ

dP2

dρ
+ (p2 + ω2)P2 = 0 , (3.15)

d2p2
dρ2

+
D − 1

ρ

dp2
dρ

+
1

4
P 2
2 = 0 . (3.16)

Then the time dependence of Φ4(τ, ρ) and ϕ4(τ, ρ) is determined by (3.13) and (3.14) as

Φ4(τ, ρ) = P4(ρ) cos τ +
1

6
g2P

2
2 [cos(2τ) − 3] , ϕ4(τ, ρ) = p4(ρ)−

1

16
P2(ρ)

2 cos(2τ) .

(3.17)

Here we see the first contribution of a nontrivial U(Φ) potential, the term proportional to

g2 in Φ4. If (and only if) the potential is non-symmetric around its minimum, even Fourier

components appear in the expansion of Φ.

Introducing the new variables

S =
1

2
P2 , s = p2 + ω2 , (3.18)

(3.15) and (3.16) can be written into the form which is called the time-independent

Schrödinger-Newton (or Newton-Schrödinger) equations in the literature:

d2S

dρ2
+
D − 1

ρ

dS

dρ
+ sS = 0 , (3.19)

d2s

dρ2
+
D − 1

ρ

ds

dρ
+ S2 = 0 . (3.20)

We look for localized solutions of these equations, in order to determine the core part of

small amplitude oscillons to a leading order approximation in ε. The main features of the

solutions depend on the number of spatial dimensions D. For D ≥ 6 positive monotonically

decreasing solutions necessarily satisfy s = S, they tend to zero, furthermore, the Lane-

Emden equation holds [45]
d2s

dρ2
+
D − 1

ρ

ds

dρ
+ s2 = 0 . (3.21)

For D > 6 solutions are decreasing as 1/ρ2 for large ρ, consequently they have infinite

energy. It can also be shown that solutions of the original Schrödinger-Newton system

with s 6= S, and a necessarily oscillating scalar field, have infinite energy, hence there is

no finite energy solution for D > 6. For D = 6 the explicit form of the asymptotically

decaying solutions of (3.21) are known

s = ±S =
24α2

(1 + α2ρ2)2
, (3.22)

where α is any constant. Since the replacement of Φ with −Φ and a simultaneous reflection

of the potential around its minimum is a symmetry of the system, we choose the positive

sign for S in (3.22). For D = 6 the total energy remains finite.
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If D < 6, then localized solutions have the property that for large values of ρ the

function S tends to zero exponentially, while s behaves as s ≈ s0 + s1ρ
2−D for D 6= 2 and

as s ≈ s0 + s1 ln ρ for D = 2, where s0 and s1 are some constants. Since we are interested

in localized solutions we assume 2 < D < 6. From (3.19) it is apparent that exponentially

localized solutions for S can only exist if s tends to a negative constant, i.e. s0 < 0. In this

case the localized solutions of the Schrödinger-Newton (SN) equations (3.19) and (3.20)

can be parametrized by the number of nodes of S. The physically important ones are the

nodeless solutions satisfying S > 0, since the others correspond to higher energy and less

stable oscillons.

Motivated by the asymptotic behaviour of s, if D 6= 2 it is useful to introduce the

variables

µ =
ρD−1

2−D

ds

dρ
, ν = s− ρ2−Dµ . (3.23)

In 2 < D < 6 dimensions these variables tend exponentially to the earlier introduced

constants

lim
ρ→∞

µ = s1 , lim
ρ→∞

ν = s0 . (3.24)

Then the SN equations can be written into the equivalent form

dµ

dρ
+
ρD−1

2−D
S2 = 0 , (3.25)

dν

dρ
+

ρ

D − 2
S2 = 0 , (3.26)

d2S

dρ2
+
D − 1

ρ

dS

dρ
+
(
ν + ρ2−Dµ

)
S = 0 . (3.27)

The SN equations (3.19) and (3.20) have the scaling invariance

(S(ρ), s(ρ)) → (λ2S(λρ), λ2s(λρ)) . (3.28)

If 2 < D < 6 we use this freedom to make the nodeless solution unique by setting s0 = −1.

At the same time we change the ε parametrization by requiring

ω2 = −1 for 2 < D < 6 , (3.29)

ensuring that the limiting value of ϕ vanishes to ε2 order. Going to higher orders, it can

be shown that one can always make the choice ωi = 0 for i ≥ 3, thereby fixing the ε

parametrization, and setting

ω =
√

1− ε2 for 2 < D < 6 . (3.30)

If D = 6, since both s and S tend to zero at infinity, we have no method yet to fix the

value of α in (3.22). Moreover, in order to ensure that ϕ tends to zero at infinity we have

to set

ω2 = 0 for D = 6 . (3.31)
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3.2 Absence of odd ε powers in the expansion

Calculating the ε5 order equations from (3.5) and (3.6) and requiring the boundedness of

Φ5 and ϕ5 we obtain a pair of equations for P3 and p3:

d2P3

dρ2
+
D − 1

ρ

dP3

dρ
+ (p2 + ω2)P3 + P2(p3 + ω3) = 0 , (3.32)

d2p3
dρ2

+
D − 1

ρ

dp3
dρ

+
1

2
P2P3 = 0 . (3.33)

These equations are solved by constant multiples of

P3 = 2P2 + ρ
dP2

dρ
, p3 + ω3 = 2(p2 + ω2) + ρ

dp2
dρ

, (3.34)

corresponding to the scaling invariance (3.28) of the SN equations. In D > 2 dimensions

p3 given by (3.34) tends to ω3 − 2 for large ρ. Since we are looking for solutions for which

ϕ tends to zero asymptotically, after choosing ω3 = 0 we can only use the trivial solution

P3 = p3 = 0. The important consequence is that Φ3 = ϕ3 = 0. Going to higher orders

in the ε expansion, at odd orders we get the same form of equations as (3.32) and (3.33),

consequently, all odd coefficients of Φk and ϕk can be made to vanish. Instead of the more

general form (3.1) we can write the small amplitude expansion as

ϕ =
∞∑

k=1

ε2kϕ2k , Φ =
∞∑

k=1

ε2kΦ2k . (3.35)

3.3 Higher orders in the ε expansion

The ε6 order equations, after requiring the boundedness of Φ6 and ϕ6, yield a pair of

equations for P4 and p4:

d2P4

dρ2
+
D − 1

ρ

dP4

dρ
+ (p2 + ω2)P4 + P2(p4 + ω4)

−1

2
p22P2 −

1

32
P 3
2 +

(
5

6
g22 −

3

4
g3

)
P 3
2 = 0 , (3.36)

d2p4
dρ2

+
D − 1

ρ

dp4
dρ

+
1

2
P2P4 −

1

4
p2P

2
2 = 0 . (3.37)

This is an inhomogeneous linear system of differential equations with nonlinear, asymp-

totically decaying source terms given by the solutions of the SN equations. Since the

homogeneous terms have the same structure as in (3.32) and (3.33), one can always add

multiples of

P
(h)
4 = 2P2 + ρ

dP2

dρ
, p

(h)
4 + ω4 = 2(p2 + ω2) + ρ

dp2
dρ

, (3.38)

to a particular solution of (3.36) and (3.37). If 2 < D < 6 we are interested in solutions for

which at large radii P4 decays exponentially, and p4 ≈ q0 + q1ρ
2−D with some constants q0

and q1. We use the homogeneous solution (3.38) to make q0 = 0. Since similar choice can

be made at higher ε orders, this will ensure that the limit of ϕ will remain zero at ρ→ ∞.
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We note that, in general, it is not possible to make q1 also vanish, implying a nontrivial ε

dependence of the dilaton charge Q.

The resulting expressions for the original Φ and ϕ functions are

Φ = ε2P2 cos τ + ε4
{
P4 cos τ +

1

6
g2P

2
2 [cos(2τ) − 3]

}
+ ε6

{
P6 cos τ

+
P 3
2

256

(
1 +

16

3
g22 + 8g3

)
cos(3τ) − g2

[
P2P4 − (p2 + ω2)P

2
2 +

(
dP2

dρ

)2
]

(3.39)

+
g2
9

[
3P2P4 − (p2 + ω2)P

2
2 −

(
dP2

dρ

)2
]
cos(2τ)

}
+O(ε8) ,

ϕ = ε2p2 + ε4
[
p4 −

P 2
2

16
cos(2τ)

]
+ ε6

{
p6 −

1

32

[
4P2P4 − (p2 + ω2)P

2
2 −

(
dP2

dρ

)2
]
cos(2τ)

+
1

54
g2P

3
2 [9 cos τ − cos(3τ)]

}
+O(ε8) , (3.40)

where the functions P2 and p2 are determined by the SN equations (3.15) and (3.16), P4

and p4 can be obtained from (3.36) and (3.37), furthermore, the equations for P6 and p6
can be calculated from the ε8 order terms as

d2P6

dρ2
+
D − 1

ρ

dP6

dρ
+ (p2 + ω2)P6 + (p6 + ω6)P2 +

(
p4 + ω4 −

p22
2

)
P4

−
(

3

32
− 5

2
g22 +

9

4
g3

)
P 2
2P4 − p2P2p4 +

(
3

64
− 49

18
g22 +

3

4
g3

)
p2P

3
2 (3.41)

+

(
1

64
− 17

9
g22

)
ω2P

3
2 +

1

6
p32P2 + P2

(
1

64
+

19

9
g22

)(
dp2
dρ

)2

= 0 ,

d2p6
dρ2

+
D − 1

ρ

dp6
dρ

+
1

2
P2P6 +

1

4
P 2
4 − 1

2
p2P2P4

−1

4
P 2
2 p4 +

1

8
p22P

2
2 +

P 4
2

16

(
1

8
− 11

9
g22 +

3

2
g3

)
= 0 . (3.42)

We remind the reader that the only non-vanishing ωk for 2 < D < 6 is ω2 = −1, and we

will show in Subsection 3.5, that in general, for D = 6 the only nonzero component is ω4.

The above expressions, especially those for Φ and ϕ, simplify considerably for symmetric

U(Φ) potentials, in which case g2 = 0.

3.4 Free scalar field in 2 < D < 6 dimensions

If Φ is a free massive field with potential U(Φ) = m2Φ2/2, after scaling out m and κ no

parameters remain in the equations determining Pi and pi. The spatially localized nodeless

positive solution of the ordinary differential equations (3.15), (3.16), and the corresponding

solution of (3.36), (3.37), (3.41) and (3.42) can be calculated numerically. For D = 3 the

obtained curves are shown on Figs. 1 and 2. The obtained central values of Pi and pi for

i = 2, 4, 6 in D = 3, 4, 5 are collected in Table 1.
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Figure 1: The first three Pk functions for the free scalar field case in D = 3 spatial dimensions.
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Figure 2: The pk functions for the free scalar field case in D = 3 dimensions.

The chosen central values make all functions
D = 3 D = 4 D = 5

P2c 2.04299 7.08429 28.0399

p2c 1.93832 4.42976 14.90729

P4c 0.658158 -5.93174 -348.868

p4c 0.686532 -4.08270 -200.353

P6c 0.557141 27.3950 9532.72

p6c 0.541339 17.9090 5500.18

Table 1: Central values of the first three

functions Pi and pi for the free scalar field

in 3, 4 and 5 spatial dimensions.

Pi and pi, and consequently Φi and ϕi, tend to

zero for ρ → ∞. Although for i ≥ 4 Pi and pi
are not monotonically decreasing functions, their

central values represent well the magnitude of

these functions. Generally, the validity domain

of an asymptotic series ends where a higher or-

der term starts giving larger contributions than

previous order terms. For D = 3 the sixth order

ε expansion can be expected to be valid even for

as large parameter values as ε = 1. For D = 4

this domain is ε < 0.7, while for D = 5 it de-

creases to ε < 0.22.
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3.5 ε4 order for D = 6

As we have already stated in Subsection 3.1, if D = 6 then ω2 = 0, s = S and the explicit

form of the solution of the SN equations is given by (3.22). Introducing the new variables

z and Z by

P4 =
1

3
(2Z + z) , p4 + ω4 =

1

3
(Z − z) , (3.43)

equations (3.36) and (3.37) decouple,

d2z

dρ2
+

5

ρ

dz

dρ
− sz +

3

4
β1s

3 = 0 , (3.44)

d2Z

dρ2
+

5

ρ

dZ

dρ
+ 2sZ − 9

4
β2s

3 = 0 , (3.45)

where the constants β1 and β2 are defined by the coefficients in the potential as

β1 = 1 +
80

9
g22 − 8g3 , (3.46)

β2 = 1− 80

27
g22 +

8

3
g3 . (3.47)

For a free scalar field with U(Φ) = Φ2/2 we have β1 = β2 = 1. The general regular solution

of (3.44) can be written in terms of the (complex indexed) associated Legendre function P

as

z =
144β1α

4(14 + 6α2ρ2 + α4ρ4)

13(1 + α2ρ2)4
+

C1

α2ρ2
P 2
(i
√
23−1)/2

(
1− α2ρ2

1 + α2ρ2

)
, (3.48)

where C1 is some constant. The limiting value at ρ→ ∞ is z∞ = −C1 cosh(π
√
23/2)/π ≈

−297.495C1 . The regular solution of (3.45) is

Z =
3888β2α

4(1− α2ρ2)

7(1 + α2ρ2)3
ln(1 + α2ρ2) (3.49)

+
324β2α

6ρ2(220 + 100α2ρ2 − 16α4ρ4 − α6ρ6)

35(1 + α2ρ2)4
+ C2

α2ρ2 − 1

(α2ρ2 + 1)3
,

The limiting value at ρ → ∞ is Z∞ = −324β2α
4/35, independently of C2. Since P4 must

tend to zero, according to (3.43), z∞ = 648β2α
4/35, fixing the constant C1. Since the mass

of the field Φ is intended to remain m = 1, the limit of p4 also has to vanish, giving

ω4 = −324

35
β2α

4 . (3.50)

This expression is not enough to fix ω4 yet, since α is a free parameter. If β2 > 0 then it is

reasonable to use (3.50) to set ω4 = −1, thereby fixing the free parameter α in the ε2 order

component of Φ and ϕ. The change of the so far undetermined constant C2 corresponds

to a small rescaling of the parameter α in the expression (3.22). Its concrete value will

fix the coefficient ω6 in the expansion of the frequency. The homogeneous parts of the

differential equations at higher ε order will have the same structure as those for P4 and p4.

Choosing the appropriate homogeneous solutions all higher ωk components can be set to

zero, yielding

ω =
√

1− ε4 for D = 6 if β2 > 0 . (3.51)
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This expression is valid for the free scalar field case with potential U(Φ) = Φ2/2 in D = 6,

since then β2 = 1. For certain potentials β2 < 0, and one can use (3.50) to set ω4 = 1.

This case is quite unusual in the sense that the frequency of the oscillon state is above the

fundamental frequency m = 1. In the very special case, when β2 = 0 the frequency differs

from the fundamental frequency only in ε6 or possibly higher order terms.

3.6 Total energy and dilaton charge of oscillons

Substituting (3.39) and (3.40) into the expression (2.3) of the total energy, we get

E = ε4−DE0 + ε6−DE1 +O(ε8−D) , (3.52)

where

E0 =
πD/2

Γ(D/2)

∫ ∞

0
dρ ρD−1P 2

2 , E1 =
πD/2

Γ(D/2)

∫ ∞

0
dρ ρD−1P2(2P4 − P2) . (3.53)

Since P2 = 2S, for 2 < D < 6 we can use (3.24) and (3.25) to get

E0 =
4πD/2

Γ(D/2)
(D − 2)s1 . (3.54)

The numerical values of s1, E0 and E1 for D = 3, 4, 5 are listed in Table 2.

To the calculated order, i.e. up to ε6−D, for
D = 3 D = 4 D = 5

s1 3.50533 7.69489 10.4038

E0 88.0985 607.565 1642.91

E1 123.576 2522.10 31374.2

Table 2: The numerical values of s1,

E0 and E1 in 3, 4 and 5 spatial dimen-

sions.

D = 3 and D = 4 the energy is a monotonically

increasing function of ε, while for D = 5 there is

an energy minimum at ε = 0.2288. This result can

only be taken as an estimate, as the validity domain

of an asymptotic series ends when two subsequent

terms are approximately equal.

For D = 6 the leading order term in the total

energy is

E =
192π3

α2ε2
. (3.55)

As we have already noted, for D > 6 there are no finite energy solutions.

The leading order ε dependence of the dilaton charge for 2 < D < 6 is given by

Q = s1ε
4−D , (3.56)

where we used the definition (2.7), (3.24) and the relation ρ = εr. The dilaton charge for

the D = 6 oscillon is infinite. In higher orders in ε the proportionality between the dilaton

charge and energy is violated.

4. Time evolution of oscillons

In this section we employ a numerical time evolution code in order to simulate the actual

behaviour of oscillons in the scalar-dilaton theory. We use a fourth order method of line
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code with spatial compactification in order to investigate spherically symmetric fields [46].

Our aim is to find configurations which are as closely periodic as possible. To achieve this,

we use initial data obtained from the leading ε2 terms of the small amplitude expansion

(3.39) and (3.40). The smaller the chosen ε is, the more closely periodic the resulting

oscillating state becomes. However, for moderate values of ε, it is possible to improve the

initial data by simply multiplying it by some overall factor very close to 1.

The main characteristics of the evolution of small amplitude initial data depend on

the number of spatial dimensions D. For D = 3 and D = 4 oscillons appear to be stable.

If there is some moderate error in the initial data, it will still evolve into an extremely long

living oscillating configuration, but its amplitude and frequency will oscillate with a low

frequency modulation. We employ a fine-tuning procedure to minimize this modulation

by multiplying the initial data with some empirical factor. For D = 5 and D = 6 small

amplitude oscillons are not stable, having a single decay mode. In this case we can use the

fine-tuning method to suppress this decay mode, and make long living oscillon states with

well defined amplitude and frequency. Without tuning in D = 5 and D = 6, in general,

an initial data evolves into a decaying state. The tuning becomes possible because there

are two possible ways of decay. One with a steady outwards flux of energy, the other is

through collapsing to a central region first.

Having calculated several closely periodic oscillon configurations, it is instructive to

see how closely their total energy follow the expressions (3.52)-(3.55). Apart from checking

the consistency of the small amplitude and the time-evolution approaches, this also gives

information on how large ε values the small amplitude expansion remains valid. The

parameter ε for the evolving oscillon is calculated from the numerically measured frequency

by the expression ε =
√
1− ω2. The results for D = 3 are presented on Fig. 3. In contrast
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Figure 3: Total energy of three-dimensional oscillons as a function of the parameter ε.

to general relativistic oscillatons, there is no maximum on the energy curve. This indicates

that all three dimensional oscillons in the dilaton theory are stable.

The ε dependence of the energy for D = 5 is presented on Fig. 4. There is an energy

minimum of the numerically obtained states, approximately at ε = 0.21, above which
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Figure 4: Total energy of five-dimensional oscillons as a function of the parameter ε. The vertical

line at ε = 0.21 shows the place of the energy minimum. States to the right of it are stable, while

those to the left have a single decay mode.

oscillons are stable. The place of the minimum agrees quite well with the value ε = 0.2288

calculated in Subsection 3.6 using the first two terms of the small amplitude expansion.

The behaviour of the energy close to the minimum is shown on Fig. 5.
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Figure 5: The region of Fig. 4 near the energy minimum.

We have also constructed oscillon states for D = 6 dimensions. These oscillons have

quite large energy, due to the slow spatial decay of the functions Φ and ϕ. For free massive

scalar fields, oscillons have frequency given by (3.51), i.e. an initial data with a given ε

value will evolve to an oscillon state with frequency approximately following ω =
√
1− ε4.

However, there are potentials, for which the oscillation frequency is above the threshold

ω = 1. For example, this happens for the potential U(Φ) = Φ2(Φ − 2)2/8 with the choice

κ = 1/2.

In conclusion, in the dilaton-scalar theory oscillons follow the stability pattern observed
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in the case of self-interacting scalar and Einstein-Klein-Gordon theory; if ε decreases with

decreasing energy, oscillons are stable, while if ε increases with decreasing energy, oscillons

are unstable. In other words if the time evolution (i.e. energy loss) of an oscillon leads

to spreading of the core, the oscillon is stable, while oscillons are unstable, if they have to

contract with time evolution. The decreasing or increasing nature of the energy, and hence

empirically the stability of the oscillating configurations, is well described by the first two

terms of the small amplitude expansion (3.52). The result following from Eq. (3.52) shows

the existence of an energy minimum for D > 4. This provides an analytical argument for

the existence of at least one unstable mode. In particular, for D = 5 spatial dimensions the

frequency separating the stable and unstable domains is determined by the small amplitude

expansion to satisfactory precision.

In order to study the instability in more detail numerically, we compared the evolution

of two almost identical initial data obtained from the small amplitude expansion with

ε = 0.05. In order to make the unstable state long living, a fine tuning procedure is

applied, multiplying the amplitude of the initial data by a factor with value close to 1.0178.

The multiplicative factors used in the two chosen initial values differ by 2.2 × 10−16. One

of the two initial data develops into a configuration decaying with a uniform outward

current of energy, the other through collapsing to a high density state first. On Fig. 6

the time evolution of the difference of the central value of the dilaton fields in the two

states ∆ϕ = ϕ1 −ϕ2 is shown. The curve follows extremely well the exponential increase

 1e-14
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∆ϕ
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Figure 6: Increase in the difference of the dilaton field ϕ for two similar configurations.

described by

∆ϕ = 6.583 × 10−16 exp(0.003157 t) , (4.1)

showing that there is a single decay mode growing exponentially. The difference of the

scalar fields, ∆Φ = Φ1 − Φ2, grows with the same exponent. The spatial dependence of

the decaying mode is illustrated on Fig. 7, where ∆Φ is plotted at several moments of time

corresponding to the maximum of Φ1 at the center.
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Figure 7: Radial behaviour of the difference of the scalar fields of two very similar configurations.

At the chosen moments of time the scalar is maximal at the center, and the subsequent moments

are separated by 32 oscillations.

Our numerical results strongly indicate that oscillons in the scalar-dilaton theory are

unstable for D > 4, and they admit a single decay mode. For the single scalar field

system the instability arises for D > 2 (see Ref. [31]), but the decay modes have been

calculated analytically only in some very special cases. The scalar theory with potential

U(φ) = φ2(1 − lnφ2) admits exactly time-periodic breathers in any dimensions. The

stability of these breathers in three dimensions has been investigated in detail in [47][48].

It has been found that these breathers always admit a single unstable mode. It needs

further studies whether an analysis along the lines of Ref. [47] can also be applied to more

general potentials in the small amplitude limit, and whether it can be generalized to the

case when the scalar is coupled to a dilaton field.

5. Determination of the energy loss rate

Although oscillons are extremely long living, generally they are not exactly periodic. In

this section we calculate how the energy loss rate depends on the oscillon frequency for

small amplitude configurations. To simplify the expressions in this section we consider a

massive free scalar field, i.e. U(Φ) = m2Φ2/2. We assume that 2 < D < 6, since then the

scalar field tends to zero exponentially for large ρ.

The outgoing radiation will dominantly be in the dilaton field and the radiation am-

plitude will have the ε dependence: ε exp (−2QD/ε). In Refs. [30] and [31] we have used

two different methods for determining the ε independent part of the radiation amplitude:

Borel summation and solution of the complexified mode equations numerically. In this

paper we will use an analytic method based on Borel-summing the asymptotic series in the

neighborhood of its singularity in the complex plane. Other potentials which are symmet-

ric around their minima can be treated analogously. If the potential is asymmetric only
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the numerical method could be used. This phenomenon is in complete analogy with the

problem arising with a single scalar field considered in Ref. [30].

5.1 Singularity of the small ε expansion

We first investigate the complex extension of the functions obtained by the small amplitude

expansion in Sec. 3. Extending the solutions s and S of the Schrödinger-Newton equations

(3.19) and (3.20) to complex ρ coordinates they both have pole singularities on the imag-

inary axis of the complex plane. We consider the closest pair of singularities to the real

axis, since these will give the dominant contribution to the energy loss. They are located

at ρ = ±iQD. The numerically calculated values of QD are listed in Table 3 for spatial

dimensions D = 3, 4, 5.

Let us measure distances from the upper singularity by a
D QD

3 3.97736

4 2.30468

5 1.23595

Table 3: The distance

QD between the real axis

and the pole of the funda-

mental solution of the SN

equation for various spa-

tial dimensions D.

coordinate R defined as

ρ = iQD +R . (5.1)

Close to the pole we can expand the SN equations, and obtain

that s and S have essentially the same behaviour,

s = ±S = − 6

R2
− 6i(D − 1)

5QDR
− (D − 1)(D − 51)

50Q2
D

+O(R) , (5.2)

even though they clearly differ on the real axis. Since for sym-

metric potentials we can always substitute Φ by −Φ, we choose the positive sign for S

in (5.2). This choice is compatible with the sign of S used on the real axis at the small

amplitude expansion section. We note that for D > 1 there are logarithmic terms in the

expansion of s and S, starting with terms proportional to R4 lnR. According to (3.18),

the functions determining the leading ε2 parts of ϕ and Φ in this case are

p2 = s+ 1 , P2 = 2S . (5.3)

Substituting these into the equations (3.36) and (3.37), the ε4 order contributions p4 and

P4 can also be expanded around the pole

p4 = − 1161

52R4
+

324i(D − 1) lnR

35QDR3
+
c−3

R3
+O

(
lnR

R2

)
(5.4)

P4 − 2p4 =
81

13R4
+

18i(D − 1)

5QDR3
+O

(
1

R2

)
, (5.5)

where the constant c−3 can only be determined from the specific behaviour of the functions

on the real axis, namely from the requirement of the exponential decay of P4 for large real

ρ.

5.2 Fourier mode expansion

Since all terms of the small amplitude expansion (3.1) are asymptotically decaying, i.e.

localized functions, the small amplitude expansion can be successfully applied to the core
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region of oscillons. However it cannot describe the exponentially small radiative tail re-

sponsible for the energy loss. Instead of studying a slowly varying frequency radiating

oscillon configuration it is simpler to consider exactly periodic solutions having a large

core and a very small amplitude standing wave tail. We look for periodic solutions with

frequency ω by Fourier expanding the scalar and dilaton field as

Φ =

NF∑

k=0

Ψk cos(kωt) , ϕ =

NF∑

k=0

ψk cos(kωt) . (5.6)

Although, in principle, the Fourier truncation order NF should tend to infinity, one can

expect very good approximation for moderate values of NF . In (5.6) we denoted the

Fourier components by psi instead of phi to distinguish them from the small ε expansion

components in (3.1). Since in this section we only deal with an self-interaction free scalar

field with a trivially symmetric potential,

Ψ2k = 0 , ψ2k+1 = 0 , for integer k . (5.7)

We note that the absence of sine terms in (5.6) is equivalent to the assumption of time

reflexion symmetry at t = 0. This assumption appears reasonable physically, and we have

seen in Sec. 3 that it holds in the small amplitude expansion framework.

For small amplitude configurations we can establish the connection between the ex-

pansions (3.1) and (5.6) by comparing to (3.39) and (3.40), obtaining

Ψ1 = ε2P2 + ε4P4 + ε6P6 +O(ε8) , (5.8)

Ψ3 = ε6
P 3
2

256
+O(ε8) , (5.9)

ψ0 = ε2p2 + ε4p4 + ε6p6 +O(ε8) , (5.10)

ψ2 = −ε4P
2
2

16
− ε6

1

32

[
4P2P4 − (p2 − 1)P 2

2 −
(
dP2

dR

)2
]
+O(ε8) . (5.11)

Let us define a coordinate y for an “inner region” by R = εy. This coordinate will

have the same scale as the original radial coordinate r, since they are related as

r =
iQD

ε
+ y . (5.12)

The “inner region” |R| ≪ 1 is not small in the y coordinate; if ε → 0 then ε|y| = |R| ≪ 1

but |y| → ∞. Using the coordinate y and substituting (5.2)-(5.5) into the small amplitude

Fourier mode expressions (5.8)-(5.11), we obtain that the leading asymptotic behaviour of

the Fourier modes for |y| → ∞ can be written as

Ψ1 = −12

y2
− 999

26y4
+ ε ln ε

648i(D − 1)

35QDy3

+ε

[
6i(D − 1)

5QDy

(
3

y2
+

108 ln y

7y2
− 2

)
+

2c−3

y3

]
+ . . . , (5.13)

Ψ3 = − 27

4y6
− ε

81i(D − 1)

20QDy5
+ . . . , (5.14)
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ψ0 = − 6

y2
− 1161

52y4
+ ε ln ε

324i(D − 1)

35QDy3

+ε

[
6i(D − 1)

5QDy

(
54 ln y

7y2
− 1

)
+
c−3

y3

]
+ . . . , (5.15)

ψ2 = − 9

y4
− ε

18i(D − 1)

5QDy3
+ . . . . (5.16)

These expressions are simultaneous series in 1/y and in ε.

5.3 Fourier mode equations

In order to obtain finite number of Fourier mode equations with finite number of terms,

when substituting (5.6) into the field equations (2.5) and (2.6) we Taylor expand and

truncate the exponential

e−ϕ =

Ne∑

k=0

1

k!
(−ϕ)k . (5.17)

We need to carefully check how large Ne should be chosen to have only a negligible influence

to the calculated results. For n ≤ NF the Fourier mode equations have the form

(
d2

dr2
+
D − 1

r

d

dr
+ n2ω2 − 1

)
Ψn = Fn , (5.18)

(
d2

dr2
+
D − 1

r

d

dr
+ n2ω2

)
ψn = fn , (5.19)

where we have collected the nonlinear terms to the right hand sides, and denoted them with

Fn and fn. These are polynomial expressions involving various Ψk and ψk, with quickly

increasing complexity when increasing the truncation orders NF and Ne. The solution of

(5.18) and (5.19) yields the intended quasibreathers, with a localized core and a very small

amplitude oscillating tail. For small amplitude configurations the functions Ψk and ψk will

have poles at the complex r plane, just as we have seen in the small amplitude expansion

formalism. In order to calculate the tail amplitude it is necessary to investigate the Fourier

mode equations instead of the equations obtained in Sec. 3. Although in the Fourier

decomposition method we have not defined a small amplitude parameter yet, motivated

by (3.30), we can, in general, define ε as

ε =
√
1− ω2 . (5.20)

Dropping O(ε2) terms, in the neighborhood of the singularity the mode equations take the

form
(

d2

dy2
+ ε

D − 1

iQD

d

dy
+ n2 − 1

)
Ψn = Fn , (5.21)

(
d2

dy2
+ ε

D − 1

iQD

d

dy
+ n2

)
ψn = fn . (5.22)

We look for solutions of these equations that satisfy (5.13)-(5.16) as boundary conditions

for |y| → ∞ for −π/2 < arg y < 0. This corresponds to the requirement that the functions
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decay to zero without any oscillating tails for large r on the real axis. The small correction

corresponding to the nonperturbative tail of the quasibreather will arise in the imaginary

part of the functions on the Re y = 0 axis.

5.4 ε→ 0 limit near the pole

For very small ε values one can neglect the terms proportional ε on the left hand sides

of (5.21) and (5.22). In this limit the there is no dependence on the number of spatial

dimensions D. We investigate this simpler system first, and consider finite but small ε

corrections later as perturbations to it. We expand the solution of (5.21) and (5.22) (with

ε = 0) in even powers of 1/y,

Ψ2k+1 =

∞∑

j=k+1

A
(j)
2k+1

1

y2j
, ψ2k =

∞∑

j=k+1

a
(j)
2k

1

y2j
. (5.23)

We illustrate our method by a minimal system where radiation loss can be studied, namely

the case with NF = 3 and Ne = 1. Then the mode equations are still short enough to

print:

d2ψ0

dy2
=

1

4
(ψ0 − 1)(Ψ2

1 +Ψ2
3) +

1

8
ψ2Ψ1(Ψ1 + 2Ψ3) , (5.24)

d2Ψ1

dy2
= −ψ0Ψ1 −

1

2
ψ2(Ψ1 +Ψ3) , (5.25)

d2ψ2

dy2
+ 4ψ2 =

1

4
Ψ1(ψ0 − 1)(Ψ1 + 2Ψ3) +

1

4
ψ2(Ψ

2
1 +Ψ1Ψ3 +Ψ2

3) , (5.26)

d2Ψ3

dy2
+ 8Ψ3 = −1

2
ψ2Ψ1 − ψ0Ψ3 . (5.27)

When looking for solution of these equations in the form of the 1/y2 expansion (5.23), only

one ambiguity arises, the sign of A
(1)
0 . Choosing it to be negative, the first few terms of

the expansion turn out to be

ψ0 = − 6

y2
− 837

52y4
+O

(
1

y6

)
, (5.28)

Ψ1 = −12

y2
− 459

26y4
+O

(
1

y6

)
, (5.29)

ψ2 = − 9

y4
− 1845

52y6
+O

(
1

y8

)
, (5.30)

Ψ3 = − 27

4y6
− 2565

416y8
+O

(
1

y10

)
. (5.31)

The first terms agree with those of (5.13)-(5.16) obtained by the small amplitude expansion.

The difference in the 1/y4 terms of ψ0 and Ψ1 are caused by the too low truncation for the

Taylor expansion of the exponential. For Ne ≥ 2 these terms agree as well.

When increasing NF and Ne growing number of additional terms appear on the right

hand sides of (5.24)-(5.27), and the number of mode equations rise to NF + 1. These
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complicated mode equations can be calculated and 1/y2 expanded using an algebraic ma-

nipulation program. However, apart from a factor, the leading order behaviour of the

coefficients a
(n)
2 and A

(n)
3 for large n will remain the same as that of the minimal system

(5.24)-(5.27). The large n behaviour of these coefficients will be essential for the calculation

of the nonperturbative effects resulting in radiation loss for oscillons.

Starting from the free system, consisting of the linear terms on the left hand sides, it

is easy to see that the mode equations are consistent with the following asymptotic (large

n) behavior of the coefficients,

a
(n)
2 ∼ k (−1)n

(2n − 1)!

4n
(5.32)

a
(n)
0 , A

(n)
1 , A

(n)
3 ≪ a

(n)
2 , (5.33)

where k is some constant. The value of k can be obtained to a satisfactory precision

by substituting the 1/y expansion into the mode equations and explicitly calculating the

coefficients to up to high orders in n. In practice, using an algebraic manipulation software,

we have calculated coefficients up to order n = 50. The dependence of k on the order of

the Fourier expansion is given in Table 4.

The results strongly indicate that in the Nf , Ne → ∞
NF N

(min)
e k

3 5 3.71 × 10−3

4 7 3.12 × 10−6

5 8 6.03 × 10−9

6 10 4.61 × 10−13

Table 4: Dependence of the con-

stant k on the considered Fourier

components NF . The second col-

umn lists the minimal exponential

expansion order Ne which is nec-

essary to get the k value with the

given precision.

limit k = 0. We do not yet understand what is the deeper

reason or symmetry behind this. Hence, instead of (5.32)

and (5.33), the correct asymptotic behavior is

A
(n)
3 ∼ K (−1)n

(2n − 1)!

8n
(5.34)

a
(n)
0 , A

(n)
1 , a

(n)
2 ≪ A

(n)
3 . (5.35)

Taking at least NF = 6 and Ne = 9, the numerical value

of the constant turns out to be K = −0.57 ± 0.01. The

above results indicate that the outgoing radiation is in

the Ψ3 scalar mode instead of being in the ψ2 dilaton

mode. This conclusion is valid only in the framework of

the approximation employed in the present subsection,

i.e. when dropping the terms proportional to ε in (5.21) and (5.22). As we will see in the

next subsection, the situation will change to be just the opposite when taking into account

ε corrections.

All terms of the expansion (5.23) are real on the imaginary axis Re y = 0. However,

using the Borel-summation procedure it is possible to calculate there an exponentially

small correction to the imaginary part. We will only sketch how the summation is done,

for details see [30] and [37]. We illustrate the method by applying it to Ψ3. The first step

is to define a Borel summed series by

V (z) =

∞∑

n=2

A
(n)
3

(2n)!
z2n ∼

∞∑

n=2

K
(−1)n

2n

(
z√
8

)2n

= −K
2
ln

(
1 +

z2

8

)
. (5.36)
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This series has logarithmic singularities at z = ±i
√
8. The Laplace transform of V (z) will

give us the Borel summed series of Ψ3(y) which we denote by Ψ̂3(y)

Ψ̂3(y) =

∫ ∞

0
dt e−tV

(
t

y

)
. (5.37)

The choice of integration contour corresponds to the requirement of exponential decay on

the real axis. The logarithmic singularity of V (t/y) does not contribute to the integral

and integrating on the branch cut starting from it yields the imaginary part

Im Ψ̂3(y) =

∫ ∞

i
√
8 y

dt e−t Kπ

2
=
Kπ

2
exp

(
−i

√
8 y
)
. (5.38)

A similar calculation for the ψ2 dilaton mode yields

Im ψ̂2(y) =
kπ

2
exp (−2iy) . (5.39)

Since k = 0, this mode is vanishing now. However, as we will show in the next subsection,

when taking into account order ε corrections a similar expression for ψ2 with exp (−2iy) be-

haviour arise, which, due to its slower decay, will become dominant when Im y → −∞. The

continuation to the real axis of these imaginary corrections turns out to be closely related

to the asymptotically oscillating mode responsible for the slow energy loss of oscillons.

5.5 Order ε corrections near the pole

Before discussing the issue of matching the imaginary correction calculated in the neigh-

borhood of the singularity to the solution of the field equation on the real axis we deal with

the corrections arising when taking into account the terms proportional to ε in the mode

equations (5.21) and (5.22). We denote the solutions obtained in the previous subsection

by ψ
(0)
n and Ψ

(0)
n , and linearize the mode equations around them by defining

ψn = ψ(0)
n + ψ̃n , Ψn = Ψ(0)

n + Ψ̃n . (5.40)

The mode equations take the form

(
d2

dy2
+ n2

)
ψ̃n + ε

D − 1

iQD

dψ
(0)
n

dy
=
∑

m

∂fn
∂ψm

ψ̃m +
∑

m

∂fn
∂Ψm

Ψ̃m , (5.41)

(
d2

dy2
+ n2 − 1

)
Ψ̃n + ε

D − 1

iQD

dΨ
(0)
n

dy
=
∑

m

∂Fn

∂ψm
ψ̃m +

∑

m

∂Fn

∂Ψm
Ψ̃m , (5.42)

where the partial derivatives on the right hand sides are taken at Ψn = Ψ
(0)
n and ψn = ψ

(0)
n .

The small dimensional corrections ψ̃n and Ψ̃n have parts of order both ε ln ε and ε.

The linearized equations (5.41) and (5.42) are solved to ε ln ε order by the following

functions:

ψ̃n = ε ln εC
dψ

(0)
n

dy
, (5.43)

Ψ̃n = ε ln εC
dΨ

(0)
n

dy
, (5.44)
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where C is an arbitrary constant. The reason for this is quite simple: in ε ln ε order the

terms proportional to ε on the left hand sides are negligible and we get the ε = 0 equation

linearized about the original solution. Our formula simply gives the zero mode of this

equation. The constant C is determined by the appropriate behaviour when continuing

back our functions to the real axis. This can be ensured by requiring agreement with the

first few terms of the small amplitude expansion formulae (5.13)-(5.16), yielding

C =
27i(D − 1)

35QD
. (5.45)

In the small amplitude expansion (5.13)-(5.16) to every term of order ε ln ε corresponds

a term of order ε which we get by changing ln ε to ln y. Thus, we define the new variables

ψn and Ψn to describe the ε order small perturbations by

ψ̃n = ε ln εC
dψ

(0)
n

dy
+ ε

(
C ln y

dψ
(0)
n

dy
+ ψn

)
, (5.46)

Ψ̃n = ε ln εC
dΨ

(0)
n

dy
+ ε

(
C ln y

dΨ
(0)
n

dy
+Ψn

)
. (5.47)

Substituting into the linearized equations (5.41) and (5.42) we see that all terms containing

ln y cancel out,

(
d2

dy2
+ n2

)
ψn +

C

y2

(
2y

d2ψ
(0)
n

dy2
− dψ

(0)
n

dy

)
+
D − 1

iQD

dψ
(0)
n

dy
=

=
∑

m

∂fn
∂ψm

ψm +
∑

m

∂fn
∂Ψm

Ψm , (5.48)

(
d2

dy2
+ n2 − 1

)
Ψn +

C

y2

(
2y

d2Ψ
(0)
n

dy2
− dΨ

(0)
n

dy

)
+
D − 1

iQD

dΨ
(0)
n

dy
=

=
∑

m

∂Fn

∂ψm
ψm +

∑

m

∂Fn

∂Ψm
Ψm . (5.49)

If C is given by (5.45), ψn and Ψn turn out to be algebraic asymptotic series which are

analytic in y. Let us write their expansion explicitly:

Ψ2k+1 =
∞∑

n=k+1

B
(n)
2k+1

1

y2n−1
, ψ2k =

∞∑

n=k+1

b
(n)
2k

1

y2n−1
. (5.50)

Substituting these and the expansions (5.23) for ψ
(0)
n and Ψ

(0)
n into (5.48) and (5.49), it is

possible to solve for the coefficients b
(n)
k and B

(n)
k , up to one free parameter. Comparing

to (5.13)-(5.16) it is natural to choose this free parameter to be b
(2)
0 = c−3. Similarly to

that case, b
(2)
0 will only be determined by the requirement that the extension to the real

axis represent a localized solution. Furthermore, leaving C a free constant and requiring

the absence of logarithmic terms in the expansion of ψk and Ψk yields exactly the value of

C given in (5.45).
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Eq. (5.48) is consistent with the asymptotics

b
(n)
2 ∼ ikD (−1)n

(2n− 2)!

22n−1

[
1 +O

(
1

n3

)]
, (5.51)

where kD is some constant. Since the leading order result for A
(n)
3 is given by (5.34), if

kD 6= 0, the coefficients follow the hierarchy b
(n)
2 ≫ A

(n−1)
3 . In order to be able to extract

the value of kD we have calculated b
(n)
2 by solving the mode equations to high orders in

1/y, obtaining

kD = 1.640
D − 1

QD
. (5.52)

The displayed four digits precision for kD can be relatively easily obtained by setting

NF ≥ 4, Ne ≥ 5 and calculating b
(n)
2 to orders n ≥ 25. We note that there is also a term

proportional to the unknown b
(2)
0 = c−3 in each b

(n)
2 , giving a c−3 dependent kD. Luckily,

the influence of this term to kD quickly becomes negligible as NF and Ne grow, making

the concrete value of c−3 irrelevant for our purpose.

The Borel summation procedure can be done similarly as in Eqs. (5.36)-(5.38). On the

imaginary axis ψ2 is real to every order in 1/y, however it gets a small imaginary correction

from the summation procedure given by

Im ψ̂2(y) = ε
kDπ

2
exp (−2iy) . (5.53)

5.6 Extension to the real axis

Solutions of the Fourier mode equations (5.18) and (5.19) can be considered to be the sum

of two parts. The first part corresponds to the result of the small amplitude expansion,

the second to an exponentially small correction to it. The small amplitude expansion

is an asymptotic expansion, it gives better and better approximation until reaching an

optimal order, but higher terms give increasingly divergent results. The smaller ε is, the

higher the optimal truncation order becomes, and the precision also improves. The small

amplitude expansion procedure gives time-periodic localized regular functions to all orders,

characterizing the core part of the quasibreather. Their extension to the complex plane is

real on the imaginary axis. Furthermore, the functions obtained by the ε expansion are

smooth on large scales, missing an oscillating tail and short wavelength oscillations in the

core region. On the imaginary axis, to a very good approximation, the small second part

of the solution of the mode equations (5.18) and (5.19) is pure imaginary, and satisfies

the homogeneous linear equations obtained by keeping only the left hand sides of these

equations, because the quasibreather is a small-amplitude one. In the ”inner region” it is

of order 1/y2, while on the real axis its amplitude is of order ε2, hence to leading order the

quasibreather core background does not contribute. In the previous subsection we have

determined the behaviour of this small correction close to the poles. Now we extend it to

the real axis.

In the “inner region”, close to the pole, the function Im ψ̂2 given by (5.53) solves

the homogeneous linear differential equations given by the left hand side of (5.22). The

extension of this function to the real axis will provide the small correction to the small
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amplitude result mentioned in the previous paragraph. We intend to find the solution ψ̂2

of the left hand side of (5.19), which reduces to the value given by (5.53) close to the upper

pole, where r = iQD/ε+ y, and behaves as

Im ψ̂2(y) = −ε kDπ
2

exp (2iy) . (5.54)

near the lower pole, where r = −iQD/ε+ y. We follow the procedure detailed in [31]. The

resulting function for large r is

ψ̂2 = ε
ikDπ

2

(
QD

εr

)(D−1)/2

exp

(
−2QD

ε

)[
i(D−1)/2 exp(−2ir)− (−i)(D−1)/2 exp(2ir)

]
.

(5.55)

The general solution of the left hand side of (5.19) can be written as a sum involving Bessel

functions Jn and Yn, which have the asymptotic behaviour

Jν(x) →
√

2

πx
cos
(
x− νπ

2
− π

4

)
, (5.56)

Yν(x) →
√

2

πx
sin
(
x− ν π

2
− π

4

)
, (5.57)

for x→ +∞. The solution satisfying the asymptotics given by (5.55) is

ψ̂2 =
√
π

αD

rD/2−1
YD/2−1(2r) , (5.58)

where the amplitude at large r is given by

αD = επkD

(
QD

ε

)(D−1)/2

exp

(
−2QD

ε

)
. (5.59)

For D > 2 the function given by (5.58) is singular at the center, due to the usual central

singularity of spherical waves. Since the amplitude of the quasibreather core is proportional

to ε2, and its size to 1/ε, for small ε it is possible to extend the function ψ̂2 in its form (5.58)

to the real axis into a region which is outside the domain where ψ̂2 gets large, but which

is still close to the center when considering the enlarged size of the quasibreather core.

When extending this function further out along the real r axis, because of the large size of

the quasibreather core, the nonlinear source terms on the right hand side of (5.19) are not

negligible anymore, and the expression (5.58) for ψ̂2 cannot be used. What actually happens

is that ψ̂2 tends to zero exponentially as r → ∞. This follows from the special choice of

the “inner solution” close to the singularity; namely, we were looking for a solution which

agreed with the small amplitude expansion for Re y → ∞. The small amplitude expansion

gives exponentially localized functions to each order and we also required decay beyond all

orders when choosing the contour of integration in the Borel summation procedure.

By the above procedure we have constructed a solution of the mode equations which is

singular at r = 0. The singularity is the consequence of the initial assumption of exponential

decay for large r. The asymptotic decay induces an oscillation given by (5.58) in the

intermediate core, and a singularity at the center. In contrast, the quasibreather solution
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has a regular center, but contains a minimal amplitude standing wave tail asymptotically.

Considering the left hand side of (5.19) as an equation describing perturbation around

the asymptotically decaying solution, we just have to add a solution δψ2 determined by

the amplitude (5.59) with the opposite sign of (5.58) to cancel the oscillation and the

singularity in the core. This way one obtains the regular quasibreather solution, whose

minimal amplitude standing wave tail is given as

φQB = −
√
π

αD

rD/2−1
YD/2−1(2r) cos(2t) (5.60)

≈ − αD

r(D−1)/2
sin
[
2r − (D − 1)

π

4

]
cos(2t). (5.61)

Adding the regular solution, where Y is replaced by J , would necessarily increase the

asymptotic amplitude.

If we subtract the incoming radiation from a QB and cut the remaining tail at large

distances, we obtain an oscillon state to a good approximation. Subtracting the regular

solution with a phase shift in time, we cancel the incoming radiating component, and obtain

the radiative tail of the oscillon,

φosc = −
√
π

αD

rD/2−1

[
YD/2−1(2r) cos(2t)− JD/2−1(2r) sin(2t)

]
(5.62)

≈ − αD

r(D−1)/2
sin
[
2r − (D − 1)

π

4
− 2t

]
. (5.63)

The radiation law of the oscillon is easily obtained now,

dE

dt
= −k2Dπ2

4πD/2

Γ
(
D
2

) ε2
(
QD

ε

)D−1

exp

(
−4QD

ε

)
, (5.64)

where the constant kD is given by (5.52). If we assume adiabatic time evolution of the

ε parameter determining the oscillon state, using Eqs. (3.52) and (3.54) giving E as a

function of ε, we get a closed evolution equation for small amplitude oscillons, determining

their energy as the function of time.

For the physically most interesting case, D = 3 we write the evolution equation for ε

and its leading order late time behavior explicitly:

dε

dt
= −30.29 exp

(
−15.909

ε

)
(5.65)

ε ≈ 15.909

ln t
, E ≈ 1401.6

ln t
. (5.66)
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