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Spherically symmetric oscillatons (also referred to as oscillating soliton stars) i.e. gravitationally
bound oscillating scalar lumps are considered in theories containing a massive self-interacting real
scalar field coupled to Einstein’s gravity in 1 +D dimensional spacetimes. Oscillations are known
to decay by emitting scalar radiation with a characteristic time scale which is, however, extremely
long, it can be comparable even to the lifetime of our universe. In the limit when the central density
(or amplitude) of the oscillaton tends to zero (small-amplitude limit) a method is introduced to
compute the transcendentally small amplitude of the outgoing waves. The results are illustrated in
detail on the simplest case, a single massive free scalar field coupled to gravity.

I. INTRODUCTION

Numerical simulations of Seidel and Suen[1] have re-
vealed that spatially localized, extremely long living, os-
cillating configurations evolve from quite general initial
data in the spherically symmetric sector of Einstein’s
gravity coupled to a a free, massive real Klein-Gordon
field. For example, they observed that initially Gaus-
sian pulses evolve quickly into configurations which ap-
pear to be time-periodic. It has been already noted in
Ref.[1], that the resulting objects may not be strictly
time-periodic, rather they may evolve on a secular time
scale many orders of magnitude longer than the observed
oscillation period. These interesting objects were first
baptized ”oscillating soliton stars” in Ref. [1], but some-
what later the same objects have been referred to as ”os-
cillatons” by the same authors [2]. This latter name has
been by now widely adopted, and we shall also stick to
its usage throughout this paper. It has been observed
in the numerical simulations of Ref. [1] that oscillatons
are stable during the time evolution. Moreover it has
been argued in Ref.[2] that oscillatons do form in physi-
cal processes through a dissipationless gravitational cool-
ing mechanism, making them of great physical impor-
tance. For example oscillatons would be good candidates
for dark matter in our Universe.

On the other hand, stimulated by the seminal work
of Dashen, Hasslacher and Neveu in the one-dimensional
φ4-theory [3], numerical simulations have revealed that
in an impressive number of scalar field theories spatially
localized structures –oscillons– form from generic initial

data which become very closely time periodic, and live for
very long times [4–12]. These objects oscillate nearly pe-
riodically in time, resembling “true” (i.e. time-periodic)

breathers. An oscillon possesses a “radiative” tail outside
of its core region where its energy is leaking continuously
in form of (scalar) radiation. Therefore a simple approx-
imate physical picture of a sufficiently small-amplitude
oscillon is the that of a “true” breather whose frequency
is increasing on a secular time scale since the amplitude
of the outgoing radiation is much smaller than that of the
core. It has been shown in Refs. [13], [14], that slowly ra-
diating oscillons can be well described by a special class of
exactly time-periodic “quasibreathers” (QB). Being time
periodic, QBs are easier to describe mathematically by
ordinary Fourier analysis than the long time asymptotics
of oscillons. A QB possesses a localized core in space
(just like true breathers) which approximates that of the
corresponding oscillon very well, but in addition it has a
standing wave tail whose amplitude is minimized. This
is a physically motivated condition, which heuristically
singles out “the” solution approximating a true breather
as well as possible, for which this amplitude would be
identically zero. The amplitude of the standing wave tail
of a QB is closely related to that of the oscillon radiation,
therefore its computation is of prime interest. Roughly
speaking “half” of the standing wave tail corresponds to
incoming radiation from spatial infinity. It is the incom-
ing radiation that maintains the time periodicity of the
QBs by compensating the energy loss through the outgo-
ing waves. In a series of papers [14–16] a method has been
developed to compute the leading part of the exponen-
tially suppressed tail amplitude of QBs, in a large class
of scalar theories in various dimensions, in the limit when
the QB core amplitude is small. Although oscillons con-
tinuously loose energy through radiation, many of them
are remarkably stable. The longevity and the ubiquity
of oscillons make them of potentially great physical in-
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terest [17–21]. Quite importantly oscillons also appear in
the course of time evolution when other fields, e.g. vec-
tor fields are present [22–24]. There is little doubt that
oscillons and oscillatons are closely related objects.
The basic physical mechanism for the anti-intuitively

slow radiation of oscillons is that the lowest frequency
mode of the scalar field is trapped below the mass thresh-
old and only the higher frequency modes are coupled to
the continuum.
In this paper we generalize the method of Refs. [14–

16] to compute the mass loss of spherically symmet-
ric oscillations induced by scalar radiation in the limit
of small oscillaton amplitudes, ε, in 1 + D dimensional
spacetimes. These methods have been succesfully applied
to D-dimensional scalar field theories coupled to a dila-
ton field [25]. Numerous similarities exist between cou-
pling a theory to a dilaton field and to gravitation: the
field configurations are of ε2 order and the lowest order
equations determining the profiles are the Schrödinger-
Newton equations. The stability pattern is also analo-
gous. Despite these similarities between the dilaton and
the gravitational theory there are some technical and
even some conceptual differences. Since there is no time-
like Killing vector neither for oscillatons nor for the cor-
responding QBs, already the very definition of mass and
mass loss is less obvious than in flat spacetime. Another
conceptual issue is that the spacetime of a time-periodic
QB is not asymptotically flat, which is related to the fact
that the “total mass” of a QB is infinite. In the case of
spherical symmetry considered in this paper a suitable
local mass function is the Misner-Sharp energy and the
mass loss can be defined with aid of the Kodama vector.
The issue of the precise asymptotics of spacetimes can
be sidestepped in the limit ε → 0 by considering only a
restricted, approximatively flat spacetime region contain-
ing the core of the QB (having a size of orderO(1/ε)) and
part of its oscillating tail. We find that to leading order
in the ε expansion the oscillaton core is determined by
the D-dimensional analogues of the Schrödinger-Newton
equations [26–30] independently of the self-interaction
potential. It turns out that exponentially localized os-
cillatons exist for 2 < D < 6. These findings show a
striking similarity to dilaton-scalar theories as found in
Ref. [25]. In the case of spherically symmetric oscillatons
no gravitational radiation is expected due to Birkhoff’s
theorem. The mass loss of spherically symmetric oscilla-
tons is entirely due to scalar radiation.
The following simple formula gives the mass loss of a

small-amplitude oscillaton in D spatial dimensions:

dM

dt
= − c1

mD−3εD−1
exp

(

−c2
ε

)

, (1)

where m denotes the mass of the scalar field, c1 is a D-
dependent constant, while c2 depends on both D and the
self-interaction scalar potential. The numerical values
of c1 , c2 in the Einstein-Klein-Gordon (EKG) theory for
spatial dimensions D = 3, 4, 5 are given in Table VI. We
also compute and tabulate the most important physical

properties of oscillatons in the EKG theory (their mass as
a function of time, their radii). We would like to stress,
that the method is applicable for oscillatons in scalar
theories with any self-interaction potential developable
into power series.

In the seminal work of Don N. Page [31] both the clas-
sical and quantum decay rate of oscillatons has been con-
sidered for the case of free massive scalars in the EKG
theory (for D = 3). We agree with the overall qualita-
tive picture of the oscillaton’s mass loss found in Ref.[31],
however, there are also some differences in the quantita-
tive results. For example, the amplitude of the outgoing
wave (related to

√
c1) found by our method differs sig-

nificantly from that of Ref.[31]. The main source of this
discrepancy is due to the fact that this amplitude is given
by an infinite series in the ε expansion, where all terms
contribute by the same order, whereas in the estimate
of Ref.[31] only the lowest order term in this series has
been used. Our methods which are based on the work of
Segur-Kruskal [32] avoid this difficulty altogether, more-
over for the class of self-interaction potentials containing
only even powers of the scalar field, Φ, the radiation am-
plitude can be computed analytically using Borel sum-
mation.

We now give a lightning review on previous results
scattered in the literature on oscillatons in 3+1 dimen-
sions. For a given scalar field mass, m, there is a one-
parameter family of oscillatons, parametrized, for exam-
ple, by the central amplitude of the field, Φc. As Φc

increases from small values, the mass of the oscillaton,
M , is getting larger, while the radius of the configuration
decreases. For a critical value of the central amplitude,
Φcrit, a maximal mass configuration is reached. Oscilla-
tons with central amplitudes Φc > Φcrit are unstable [1].
This behavior is both qualitatively and quantitatively
very similar to that of boson stars [26, 33, 34], and also to
the behavior of white dwarfs and neutron stars [35]. For
reviews of the vast literature on boson stars see for exam-
ple, Refs. [36] and [37]. In Refs. [38, 39] a one-parameter
family of oscillaton-type solutions in an Einstein-scalar
theory with two massive, real scalar fields has been pre-
sented, which are essentially transitional states between
boson stars and oscillatons.

The interaction of weak gravity axion field oscillatons
with white dwarfs and neutron stars have been discussed
in [40, 41], proposing a possible mechanism for gamma
ray bursts [42]. Since for very low mass scalar fields os-
cillatons may be extremely heavy, it has been suggested
that they may be the central object of galaxies [43], or
form the dark matter galactic halos [44–50].

Qualitatively good results for various properties of os-
cillatons has been obtained by Ureña-López [51], truncat-
ing the Fourier mode decomposition of the field equations
at as low order as cos(2ωt), where ω is the fundamental
frequency. Then the space and time dependence of the
scalar field separates as Φ(t, r) = Φ1(r) cos(ωt). Oscilla-
tons with nontrivial self-interaction potentials have also
been studied in [51], indicating that similarly to boson
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stars, the maximal mass can be significantly larger than
in the Klein-Gordon case.

The Fourier mode equations have been studied in [52]
up to orders cos(10ωt). The obtained value of the max-
imal mass by this higher order truncation is 0.607/m in
Planck units. For small-amplitude nearly Minkowskian
configurations spatial derivatives are also small, and in
Ref. [52] (and independently in [53]) it has been demon-
strated that such nearly flat oscillatons can be described
by a pair of coupled differential equations, the so called
time independent the Schrödinger-Newton equations [26–
30]. These equations also describe the weak gravity limit
of boson stars. For quantum mechanical motivations
leading to the Schrödinger-Newton equations see [54, 55].

The time evolution of perturbed oscillatons has been
investigated in detail by [56]. For each mass smaller than
the maximal oscillaton mass there are two oscillaton con-
figurations. The one with the larger radius is a stable S-
branch oscillaton, and the other is an unstable U-branch
oscillaton. Moderately perturbed S-branch oscillatons vi-
brate with a low frequency corresponding to a quasinor-
mal mode. Perturbed U-branch oscillatons collapse to
black holes if the perturbation increases their mass, oth-
erwise they migrate to an S-branch oscillaton. Actually,
U-branch oscillatons turn out to be the critical solutions
for type I critical collapse of massive scalar fields [57].
Corresponding apparently periodic objects also form in
the critical collapse of massive vector fields [58].

There are also excited state oscillatons, indexed by the
nodes of the scalar field. The instability and the decay of
excited state oscillatons into black holes or S-branch os-
cillatons is described in [59]. The evolution of oscillatons
on a full 3D grid has been also performed in [59], cal-
culating the emitted gravitational radiation. Since f(R)
gravity theories are equivalent to ordinary general rela-
tivity coupled to a real scalar field, oscillatons naturally
form in these theories as well [60]. The geodesics around
oscillatons has been investigated in [61].

The plan of the paper is the following. In Section II
the general formalism concerning a classical real scalar
field coupled to gravitation in D dimensional, spherically
symmetric spacetimes is set up. In subsection II C the
coupled Einstein-scalar equations are explicited in a spa-
tially conformally flat coordinate system. In Section III
the small-amplitude expansion is presented and is carried
out in detail. In subsection III C it is shown that in lead-
ing order one obtains the Schrödinger-Newton eqs. in D
dimensions. In subsection IIID the next to leading order
results are given. Subsection III E contains an analysis
of the singularities in the complexified radial variable. In
Section IV the proper mass resp. the total mass of the
QB core is evaluated in subsection IVA resp. subsection
IVB. In subsection IVD a conjecture for a criterion of os-
cillaton stability is formulated. In Section V the Fourier
analysis of the field equations is related to the small-
amplitude expansion, and the amplitude of the standing
wave tail of the QB is determined using Borel summa-
tion techniques. In subsection VF the mass loss rate of

oscillatons in the EKG theory is computed for D = 3, 4, 5
and for various values of the mass of the scalar field.

II. SCALAR FIELD ON CURVED

BACKGROUND

A. Field equations

We consider a real scalar field Φ with a self-interaction
potential U(Φ) in a D+1 dimensional curved spacetime
with metric gab. We use Planck units with G = c =
h̄ = 1. For a free field with mass m the potential is
U(Φ) = m2Φ2/2. The total Lagrangian density is

L = LG + 16πLM , (2)

where the Einstein Lagrangian density is LG =
√−g R,

and the Lagrangian density belonging to the scalar field
is

LM = −√−g
(

1

2
Φ,aΦ

,a + U(Φ)

)

. (3)

Variation of the action with respect to Φ yields the wave
equation

gabΦ;ab − U ′(Φ) = 0 , (4)

while variation with respect to gab yields Einstein equa-
tions

Gab = 8πTab , (5)

where the stress-energy tensor is

Tab = Φ,aΦ,b − gab

(

1

2
Φ,cΦ

,c + U(Φ)

)

. (6)

If D = 1 then, by definition, the Einstein tensor is trace-
less, and from the trace of the Einstein equations it fol-
lows that U(Φ) = 0. Hence we assume that D > 1.
We shall assume that the self-interaction potential,

U(Φ), has a minimum U(Φ) = 0 at Φ = 0, and expand
its derivative as

U ′(Φ) =

∞
∑

k=1

ukΦ
k , (7)

where uk are constants. In order to get rid of the 8π
factors in the equations we introduce a rescaled scalar
field and potential by

φ =
√
8πΦ , Ū(φ) = 8πU(Φ) . (8)

Then

Ū ′(φ) =

∞
∑

k=1

vkφ
k , (9)
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with

vk =
uk

(8π)(k−1)/2
. (10)

The mass of the field is m ≡ √
u1 =

√
v1. If the pair

φ(xc) and gab(x
c) solves the field equations with a poten-

tial Ū(φ), then φ̂(xc) = φ(γxc) and ĝab(x
c) = gab(γx

c),
for any positive constant γ, is a solution with a rescaled
potential γ2Ū(φ). It is sufficient to study the problem
with potentials satisfying m2 = u1 = v1 = 1, since the
solutions corresponding to an arbitrary potential can be
obtained from the solutions with an appropriate poten-
tial with m = 1 by applying the transformation

φ(xc) → φ(mxc) , gab(x
c) → gab(mx

c) . (11)

To simplify the expressions, unless explicitly stated, in
the following we assume m = 1.

B. Spherically symmetric D + 1 dimensional

spacetime

We consider a spherically symmetric D+1 dimensional
spacetime with coordinates xµ = (t, r, θ1, ..., θD−1). The
metric can be chosen diagonal with components

gtt = −A , grr = B ,

gθ1θ1 = C , gθnθn = C

n−1
∏

k=1

sin2 θk ,
(12)

where A, B and C are functions of temporal coordinate
t and radial coordinate r. The nonvanishing components
of the Einstein tensor and the form of the wave equation
are given in Appendix A.
A natural radius function, r̂, can be defined in terms of

the area of the symmetry spheres in general spherically
symmetric spacetimes. In the metric (12) it is simply

r̂ =
√
C . (13)

The Kodama vector [62, 63] is defined then by

Ka = ǫabr̂,b , (14)

where ǫab is the volume form in the (t, r) plane. Choosing

the orientation such that ǫrt =
√
AB makes Ka future

pointing, with nonvanishing components

Kt =
r̂,r√
AB

, Kr = − r̂,t√
AB

. (15)

It can be checked that, in general, the Kodama vector
is divergence free, Ka

;a = 0. Since contracting with the

Einstein tensor, GabKa;b = 0, the current

Ja = TabK
b (16)

is also divergence free, Ja
;a = 0, it defines a conserved

charge. Integrating on a constant t hypersurface with

a future oriented unit normal vector na, the conserved
charge is

E =
2π

D

2

Γ
(

D
2

)

∫ r

0

r̂D−1
√
B naJadr (17)

=
2π

D

2

Γ
(

D
2

)

∫ r

0

r̂D−1

A
(Tttr̂,r − Ttr r̂,t) dr .

It is possible to show [62, 63], that E agrees with the
Misner-Sharp energy (or local mass) function m̂ [64],
which can be defined for arbitrary dimensions by

m̂ =
(D − 1)π

D

2

8πΓ
(

D
2

) r̂D−2
(

1− gabr̂,ar̂,b
)

. (18)

It can be checked by a lengthy calculation, that the
derivative of the mass function is

m̂,a = −2π
D

2 r̂D−1

Γ
(

D
2

) ǫabJ
b . (19)

For the radial derivative follows that

m̂,r =
2π

D

2 r̂D−1

Γ
(

D
2

)

A
(Tttr̂,r − Ttr r̂,t) , (20)

which, comparing with (17), gives E = m̂. Since for large
r the function m̂ tends to the total mass, this relation
will be important when calculating the mass loss rate
caused by the scalar radiation in Section VF. The time
derivative of the mass function is

m̂,t =
2π

D

2 r̂D−1

Γ
(

D
2

)

B
(Trtr̂,r − Trrr̂,t) . (21)

This equation is according to the expectation, that, be-
cause of the spherical symmetry, the mass loss is caused
only by the outward energy current of the massive scalar
field. If at large distances the metric becomes asymptot-
ically Minkowskian, A = B = 1, C = r2 and r̂ = r, then
using (6) and (8),

m̂,t =
2π

D

2 rD−1

Γ
(

D
2

) Φ,tΦ,r =
2π

D

2 rD−1

8πΓ
(

D
2

) φ,tφ,r . (22)

C. Spatially conformally flat coordinate system

The diffeomorphism freedom of the general spherically
symmetric time-dependent metric form (12) can be fixed
in various ways. The most obvious choice is the use of
Schwarzschild area coordinates by setting C = r2. How-
ever, as it was pointed out by Don N. Page in [31], for
the oscillaton problem it is more instructive to use the
spatially conformally flat coordinate system defined by

C = r2B , (23)
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even if some expressions are becoming longer by this
choice. As we will see in Sec. III and in Appendix B,
inside the oscillaton the spheres described by constant
Schwarzschild r coordinates are oscillating with much

larger amplitude than the constant r spheres in the con-
formally flat coordinate system. In both coordinates,
when the functions A and B tend to 1, the spacetime
approaches the flat Minkowskian metric.

In the spatially conformally flat coordinate system the Einstein equations take the form

(D − 1)

[

D

4B2
(B,t)

2 − A

rD−1B
D+2

4

(

rD−1B,r

B
6−D

4

)

,r

]

= (φ,t)
2
+
A

B
(φ,r)

2
+ 2AŪ(φ), (24)

(D − 1)





(D − 2)
(

r2B
)

,r

4r4A
2

D−2B2

(

r2A
2

D−2B
)

,r
− 1

A
1
2B

D

4
−1

(

B
D

4
−1B,t

A
1
2

)

,t

− D − 2

r2



 = (φ,r)
2
+
B

A
(φ,t)

2 − 2BŪ(φ), (25)

−D − 1

2
A

1
2

(

B,t

A
1
2B

)

,r

= φ,t φ,r, (26)

rB

A
1
2

(

A,r

rA
1
2B

)

,r

+ (D − 2)rB
1
2

(

B,r

rB
3
2

)

,r

= 2 (φ,r)
2
. (27)

The right hand sides are equal to 2Gtt, 2Grr, Gtr and 2(Gθ1θ1/r
2 −Grr), respectively. The wave equation is then

φ,rr
B

− φ,tt
A

+
φ,r

2r2D−2ABD−1

(

r2D−2ABD−2
)

,r
− φ,t

2BD

(

BD

A

)

,t

− Ū ′(φ) = 0 . (28)

III. SMALL-AMPLITUDE EXPANSION

The small-amplitude expansion procedure has been
applied successfully to describe the core region of one-
dimensional flat background oscillons in φ4 scalar theory
[3, 32, 65]. Later it has been generalized for D + 1 di-
mensional spherically symmetric systems in [14], and to
a scalar-dilaton system in [25]. In this section we gen-
eralize the method for the case when the scalar field is
coupled to gravity.

A. Choice of coordinates

We are looking for spatially localized bounded solu-
tions of the field equations (5) for which φ is small and
the metric is close to flat Minkowskian. We use the spa-
tially conformally flat coordinate system defined by (23).
It turns out, that under this approximation, all configura-
tions that remain bounded as time passes are necessarily
periodically oscillating in time. We expect that similarly
to flat background oscillons, the smaller the amplitude
of an oscillaton is, the larger its spatial extent becomes.
Numerical simulation of oscillatons clearly support this
expectation. Therefore, we introduce a new radial coor-
dinate ρ by

ρ = εr , (29)

where ε denotes the small-amplitude parameter. We ex-
pand φ and the metric functions in powers of ε as

φ =

∞
∑

k=1

ǫ2kφ2k , (30)

A = 1 +

∞
∑

k=1

ǫ2kA2k , (31)

B = 1 +

∞
∑

k=1

ǫ2kB2k . (32)

Since we intend to use asymptotically Minkowskian co-
ordinates, where far from the oscillaton t measures the
proper time and r the radial distances, we look for func-
tions φ2k, A2k and B2k that tend to zero when ρ → ∞.
One could initially include odd powers of ε into the ex-
pansions (30)-(32), however, it can be shown by the
method presented below, that the coefficients of those
terms necessarily vanish when we are looking for config-
urations that remain bounded in time.

The frequency of the oscillaton also depends on its am-
plitude. Similarly to the flat background case we expect
that the smaller the amplitude is, the closer the frequency
becomes to the threshold m = 1. Numerical simulations
also show this. Hence we introduce a rescaled time coor-
dinate τ by

τ = ωt . (33)
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and expand the square of the ε dependent factor ω as

ω2 = 1 +

∞
∑

k=1

ε2kω2k . (34)

It is possible to allow odd powers of ε into the expan-
sion of ω2, but the coefficients of those terms turn out
to be zero when solving the equations arising from the
small-amplitude expansion. There is a considerable free-
dom in choosing different parametrizations of the small-
amplitude states, changing the actual form of the func-
tion ω. The physical parameter is not ε but the frequency
of the periodic states that will be given by ω. Similarly
to the dilaton model in [25], we will show, that for spatial
dimensions 2 < D < 6 the parametrization of the small-
amplitude states can be fixed by setting ω =

√
1− ε2.

B. Leading order results

The field equations we solve are the Einstein equa-
tions (24)-(27), together with the wave equation (28),
using the spatially conformally flat coordinate system
C = r2B. The results of the corresponding calculations
in Schwarzschild area coordinates C = r2 are presented
in Appendix B. Since we look for spatially slowly varying
configurations with an ε dependent frequency, we apply
the ε expansion in τ and ρ coordinates. This can be
achieved by replacing the time and space derivatives as

∂

∂t
→ ω

∂

∂τ
,

∂

∂r
→ ε

∂

∂ρ
, (35)

and substituting r = ρ/ε.
From the ε2 components of the field equations follows

that

φ2 = p2 cos(τ + δ) , B2 = b2 , (36)

where three new functions, p2, δ and b2 are introduced,
depending only on ρ. From the ε4 part of (26) it fol-
lows that δ is a constant. Then by a shift in the time
coordinate we set

δ = 0 . (37)

This shows that the scalar field oscillates simultaneously,
with the same phase at all radii.
The ε4 component of the field equations yield that

A2 = a2 , (38)

φ4 = p4 cos τ +
v2p

2
2

6
[cos(2τ)− 3] , (39)

B4 = b4 −
p22

4(D − 1)
cos(2τ) , (40)

where a2, p4 and b4 are three new functions of ρ. If
D 6= 2, from the ε4 equations also follows that

b2 =
a2

2−D
, (41)

and that the functions a2 and p2 are determined by the
coupled differential equations

d2a2
dρ2

+
D − 1

ρ

da2
dρ

=
D − 2

D − 1
p22 , (42)

d2p2
dρ2

+
D − 1

ρ

dp2
dρ

= p2(a2 − ω2) . (43)

If D = 2 then a2 = 0, and there are no nontrivial local-
ized regular solutions for b2 and p2, so we assume D > 2
from now. We note that at all orders sin τ terms can be
absorbed by a small shift in the time coordinate. After
this, no sin(kτ) terms appear in the expansion, resulting
in the time reflection symmetry at τ = 0.
Since we have already setm2 = u1 = v1 = 1, equations

(42) and (43) do not depend on the coefficients vk of the
potential Ū(φ). To order ε2 the functions φ, A and B are
the same for any potential. This means that the leading
order small-amplitude behavior of oscillatons is always
the same as for the Klein-Gordon case.

C. Schrödinger-Newton equations

Introducing the functions s and S by

s = ω2 − a2 , S = p2

√

D − 2

D − 1
, (44)

equations (42) and (43) can be written into the
form which is called the time-independent Schrödinger-
Newton (SN) equations in the literature [26–30]:

d2S

dρ2
+
D − 1

ρ

dS

dρ
+ sS = 0 , (45)

d2s

dρ2
+
D − 1

ρ

ds

dρ
+ S2 = 0 . (46)

Equations (45) and (46) have the scaling invariance

(S(ρ), s(ρ)) → (λ2S(λρ), λ2s(λρ)) . (47)

If 2 < D < 6 the SN equations have a family of solutions
with S tending to zero exponentially as ρ → ∞, and s
tending to a constant s0 < 0 as

s ≈ s0 + s1ρ
2−D . (48)

The solutions are indexed by the number of nodes of
S. The nodeless solution corresponds to the lowest en-
ergy and most stable oscillaton. We use the scaling free-
dom (47) to make the nodeless solution unique by setting
s0 = limρ→∞ s = −1. At the same time we change the ε
parametrization by requiring

ω2 = −1 for 2 < D < 6 , (49)

ensuring that the limiting value of a2 vanishes. Then for
large ρ

a2 ≈ −s1ρ2−D for 2 < D < 6 , (50)
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with only exponentially decaying corrections. Going to
higher orders, it can be shown that one can always
make the choice ωi = 0 for i ≥ 3, thereby fixing the
ε parametrization, and setting

ω =
√

1− ε2 for 2 < D < 6 . (51)

For D = 6 the explicit form of the asymptotically decay-
ing solutions are known

s = ±S =
24α2

(1 + α2ρ2)
2 for D = 6 , (52)

where α is any constant. In this case, since both s and
S tend to zero at infinity, we have no method yet to fix
the value of α in (52). Moreover, in order to ensure that
ϕ tends to zero at infinity we have to set

ω2 = 0 for D = 6 . (53)

For D > 6 there are no solutions of the SN equations
representing localized configurations [66].

Motivated by the asymptotic behavior of s, if D 6= 2 it
is useful to introduce the variables

σ =
ρD−1

2−D

ds

dρ
, ν = s− ρ2−Dσ . (54)

In 2 < D < 6 dimensions these variables tend exponen-
tially to the earlier introduced constants

lim
ρ→∞

σ = s1 , lim
ρ→∞

ν = s0 . (55)

Then the SN equations can be written into the equivalent
form

dσ

dρ
+
ρD−1

2−D
S2 = 0 , (56)

dν

dρ
+

ρ

D − 2
S2 = 0 , (57)

d2S

dρ2
+
D − 1

ρ

dS

dρ
+
(

ν + ρ2−Dσ
)

S = 0 , (58)

which is more appropriate for finding high precision nu-
merical solutions. Equation (56) will turn out to be use-
ful when integrating the mass-energy density in Section
IVA in order to determine the proper mass.

D. Higher order expansion

From the ε6 components of the field equations follows
the time dependence of A4,

A4 = a
(0)
4 + a

(2)
4 cos(2τ) , (59)

where a
(0)
4 and a

(2)
4 are functions of ρ. The functions p4

and a
(0)
4 are determined by the coupled equations

d2a
(0)
4

dρ2
+
D − 1

ρ

da
(0)
4

dρ
=

2p2p4(D − 2)

D − 1

+

(

da2
dρ

)2

+ ω2p
2
2 −

2p22a2
D − 1

, (60)

d2p4
dρ2

+
D − 1

ρ

dp4
dρ

= p4(a2 − ω2)

+
(

a
(0)
4 − ω4

)

p2 −
a2p2(D − 1)(a2 − ω2)

D − 2
(61)

− Dp32
8(D − 1)

−
(

5

6
v22 −

3

4
v3

)

p32 .

We look for the unique solution for which both a
(0)
4 and

p4 tend to zero as ρ → ∞. For 2 < D < 6 the function
p4 goes to zero exponentially, while for large ρ

a
(0)
4 ≈ 1

2
s21ρ

4−2D + s2ρ
2−D + s3 , (62)

where s1 is defined in (48), and s2 and s3 are some con-

stants. If a
(0)
4 and p4 are solutions of (60) and (61), then

for any constant c

ā
(0)
4 = a

(0)
4 + c

[

2(a2 − ω2) + ρ
da2
dρ

]

, (63)

p̄4 = p4 + c

(

2p2 + ρ
dp2
dρ

)

, (64)

are also solutions. This family of solutions is generated
by the scaling freedom (47) of the SN equations. If we
have any solution of (60) and (61) then by choosing c
appropriately we can get another solution for which s3 =
0 in (62).
The equation for b4 is

db4
dρ

=
1

2−D

da
(0)
4

dρ

+
1

4(D − 2)2
da2
dρ

[

ρ
da2
dρ

+ 4(D − 1)a2

]

(65)

+
ρ

2(D − 1)(D − 2)

[

(

dp2
dρ

)2

− p22(a2 − ω2)

]

.

For large ρ the function b4 tends to zero as

b4 ≈ 6−D

8(D − 2)2
s21ρ

4−2D +
s2

2−D
ρ2−D . (66)

The cos(2τ) part of A4 is determined by

d2a
(2)
4

dρ2
− 1

ρ

da
(2)
4

dρ
=

(D − 2)(a2 − ω2)p
2
2

2(D − 1)
(67)

− D

2(D − 1)

dp2
dρ

(

dp2
dρ

+
D − 2

ρ
p2

)

.
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We remind the reader, that for 2 < D < 6 the choice
ω2 = −1, ω4 = 0 is natural, while for D = 6 necessarily
ω2 = 0. For a Klein-Gordon field in D = 6 the only
nonvanishing coefficient is ω4 = −1.
Summarizing the results, the scalar field and the metric

components up to ε4 order are

φ = ε2p2 cos τ (68)

+ ε4
{

p4 cos τ +
v2p

2
2

6
[cos(2τ)− 3]

}

+O(ε6) ,

A = 1 + ε2a2 + ε4
[

a
(0)
4 + a

(2)
4 cos(2τ)

]

+O(ε6) , (69)

B = 1− ε2
a2

D − 2
(70)

+ ε4
[

b4 −
p22

4(D − 1)
cos(2τ)

]

+O(ε6) .

Going to higher orders, the expressions get rather com-
plicated. However, it can be seen that for symmetric po-
tentials, when v2k = 0, the scalar field φ contains only
cos(kτ) components with odd k, while A and B only con-
tains even Fourier components.
Some of the higher order expressions simplifies con-

siderably when considering symmetric potentials with
v2k = 0. Because the first radiating mode proportional to
cos(3τ) emerges at ε6 order in φ in symmetric potentials,
we present its higher order expression for the symmetric
case

φ = ε2p2 cos τ + ε4p4 cos τ + ε6p6 cos τ (71)

+ ε6

(

Dp32
64(D − 1)

+
v3p

3
2

32
+
p2a

(2)
4

8

)

cos(3τ) +O(ε8) ,

where p6 is a function of ρ determined by lengthy differ-
ential equations arising at higher orders.
For the Klein-Gordon case in D = 3 spatial dimensions

we plot the numerically obtained functions p2, a2, p4,

a
(0)
4 , a

(2)
4 and b4 on Figs. 1 and 2.

Equations (68)-(70) determine a one-parameter family
of oscillating configurations depending on the parameter
ε. This family solves the field equations with a scalar
field mass m = 1. By applying the rescaling (11) to the t
and r coordinates, we can obtain one-parameter families
of solutions with any scalar mass m.
To ε2 order, the metric is static. This is the biggest ad-

vantage of the spatially conformally flat coordinate sys-
tem C = r2B over the Schwarzschild area coordinates
C = r2. In the Schwarzschild system the constant r ob-
servers “feel” an ε2 order small oscillation in the metric
(see Appendix B). The magnitude of the acceleration of
the constant (r, θ1, θ2...) observers in the general metric
(12) is

a =
1

2A
√
B

dA

dr
, (72)

which has an ε3 order oscillating component when using
Schwarzschild coordinates, while in spatially conformally

-1

-0.5

 0

 0.5

 1

 1.5

 0  2  4  6  8  10

ρ

p2

a4
(2)

p4

D=3
p2

p4

a4
(2)

FIG. 1: The exponentially decaying functions p2, p4, and

a
(2)
4 for the small-amplitude expansion of the Klein-Gordon

oscillaton in the D = 3 case.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10  12  14  16

ρ

a2

a4
(0)

b4

D=3
a2

a4
(0)

b4

FIG. 2: The functions a2, a
(0)
4 , and b4 for the D = 3 Klein-

Gordon system. These functions tend to zero according to a
power law for ρ → ∞.

flat coordinates the temporal change in the acceleration
is only of order ε5.
The function W = ABD−2 is equal to 1 to order ε4

in the conformally flat coordinates. This motivates the
metric form choice

ds2 = −Adt2 (73)

+

(

W

A

)
1

D−2
(

dr2 + r2dθ21 + r2 sin2 θ1dθ
2
2 + . . .

)

,

which has been employed for the D = 3 case in [31].

E. Singularities on the complex plane

As we will see in Section V, in order to determine the
energy loss of oscillatons it is advantageous to extend the
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functions φ, A and B to the complex plane. In the small-
amplitude expansion formalism the extension of the co-
efficient functions φk, Ak and Bk have symmetrically po-
sitioned poles along the imaginary axis, induced by the
poles of the SN equations. We consider the closest pair of
singularities, located at ρ = ±iQD, since these will pro-
vide the dominant contribution to the energy loss. The
numerically determined location of the pole for the spa-
tial dimensions where there is an exponentially localized
core is

Q3 = 3.97736 , (74)

Q4 = 2.30468 , (75)

Q5 = 1.23595 . (76)

The leading order behavior of the functions near the
poles can be determined analytically, even if the solution
of the SN equations is only known numerically on the real
axis. Let us measure distances from the upper singularity
by a coordinate R defined as

ρ = iQD +R . (77)

Close to the pole we can expand the SN equations, and
obtain that s and S have the same behavior,

s = S = − 6

R2
− 6i(D − 1)

5QDR
− (D − 1)(D − 51)

50Q2
D

+O(R) ,

(78)
even though they clearly differ on the real axis. We note
that for D > 1 there are logarithmic terms in the ex-
pansion of s and S, starting with terms proportional to
R4 lnR. According to (41) and (44), the expression (78)
determines the ε2 parts of φ, A and B near the pole.
Substituting into (60), (61), (65) and (67), the ε4 or-

der contributions a
(0)
4 , p4, b4 and a

(2)
4 can also be de-

termined around the pole. We give the results for the
Klein-Gordon case, when vk = 0 for k > 1:

a
(0)
4 = −9(25D+ 208)

52(D− 2)R4
+

324iD(D− 1) lnR

35QD(D − 2)R3

+
a−3

R3
+O

(

lnR

R2

)

, (79)

p4

√

D − 2

D − 1
+ a

(0)
4 =

9(43D− 104)

26(D − 2)R4

+
9i(D − 1)(3D − 8)

5QD(D − 2)R3
+O

(

1

R2

)

, (80)

b4 =
9(333D+ 832)

260(D − 2)2R4
− 324iD(D− 1) lnR

35QD(D − 2)2R3
(81)

− a−3

(D − 2)R3
+

18i(D− 1)

5QD(D − 2)R3
+O

(

lnR

R2

)

,

a
(2)
4 = − 9(6−D)

5(D− 2)R4

+
6i(D − 1)(D − 6)

5QD(D − 2)R3
+O

(

1

R2

)

. (82)

The constant a−3 can only be determined from the spe-
cific behavior of the functions on the real axis, namely
from the requirement of the exponential decay of p4 for
large real ρ.

IV. PROPER AND TOTAL MASS

A. Proper mass

In this subsection we present the calculation of the
proper mass Mp, which is usually obtained by the in-
tegral of the mass-energy density over a spatial slice of
the corresponding spacetime. In the next subsection the
calculation of the total mass M will be performed, by
investigating the asymptotic behavior of the metric com-
ponents. The difference Eb =Mp −M defines the gravi-
tational binding energy, which is expected to be positive.

The mass-energy density is µ = Tabu
aub, where

the unit timelike vector ua has the components
(1/

√
A, 0, ..., 0). In terms of the rescaled scalar field φ,

µ =
1

8π

[

1

2A

(

dφ

dt

)2

+
1

2B

(

dφ

dr

)2

+ Ū(φ)

]

. (83)

The total proper mass in the metric (12) is defined by
the D dimensional volume integral

Mp =
2π

D

2

Γ
(

D
2

)

∫ ∞

0

drµ
√
BCD−1 . (84)

Applying this for the small-amplitude expansion of oscil-
latons in spatially conformally flat coordinates, and using
that ρ = εr and ω2 = 1− ε2, we can write

Mp =
2π

D

2

8πΓ
(

D
2

)

∫ ∞

0

dρρD−1ε−D
(

1 + ε2b2
)

D

2 ×
{

1

2(1 + ε2a2)

(

ε2p2ω sin τ + ε4p4 sin τ

+ ε4
v2p

2
2

3
sin(2τ)

)2

+
1

2

(

ε3 cos τ
dp2
dρ

)2

(85)

+
1

2

[

ε2p2 cos τ + ε4p4 cos τ

+ ε4
v2p

2
2

3
(cos(2τ)− 3)

]2

+
v2
3

(

ε2p2 cos τ
)3

}

.

Using (41) and (43), for the proper mass we obtain

Mp = ε4−DM (1)
p + ε6−DM (2)

p +O
(

ε8−D
)

, (86)
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where

M (1)
p =

π
D

2

8πΓ
(

D
2

)

∫ ∞

0

dρρD−1p22 , (87)

M (2)
p =

π
D

2

8πΓ
(

D
2

)

∫ ∞

0

dρρD−1

(

2p2p4

− p22 −
3D − 4

2(D − 2)
a2p

2
2

)

. (88)

The result turns out to be time independent to this order.
Although the coefficients vi of the potential also drop out
from (88), the dependence on the form of the potential
still comes in through (61). The leading order behavior,
(87), only depends on the scalar field mass m, which has
been rescaled to 1 for simplicity. Applying (11) to obtain
solutions with m 6= 1, an m2 factor appears in (83) for
the mass-energy density µ. Since the volume element in
the integral contains a m−D factor, in all the presented
proper and total mass formulas an m2−D factor appears.

Using (44), (55) and (56), the leading order coefficient
is

M (1)
p =

(D − 1)π
D

2

8πΓ
(

D
2

) s1 . (89)

The numerically calculated values for M
(1)
p and M

(2)
p for

the Klein-Gordon field case in various spatial dimensions
are listed in Table I.

D = 3 D = 4 D = 5

M (1) = M
(1)
p 1.75266 9.06533 21.7897

M (2)
−2.11742 −43.5347 −533.732

M
(2)
p −1.53319 −39.0020 −555.521

TABLE I: Coefficients of the ε expansion of the total mass
M and proper mass Mp for the m = 1 Klein-Gordon case in
D = 3, 4, 5 spatial dimensions.

B. Total mass

Since the scalar field tends to zero exponentially, at
large distances the metric should approach the static
Schwarzschild-Tangherlini metric [67]. In Schwarzschild
area coordinates, with C = r2, this metric has the form

ds2 = −
(

1− rD−2
0

rD−2

)

dt2 +
1

1− rD−2
0

rD−2

dr2 + r2dΩ2
D−1 ,

(90)

while in the spatially conformally flat coordinate system,
C = r2B, it can be written as

ds2 = −
(

4rD−2 − rD−2
0

4rD−2 + rD−2
0

)2

dt2

+

(

1 +
rD−2
0

4rD−2

)
4

D−2
(

dr2 + r2dΩ2
D−1

)

, (91)

where r0 is a constant related to the mass. In general
spherically symmetric spacetimes it is possible to define
the natural radius function r̂ by (13), and the mass func-
tion m̂ by (18). In both the Schwarzschild and confor-
mally flat coordinates, for the Schwarzschild-Tangherlini
metric m̂ is constant,

m̂ =M =
(D − 1)π

D

2

8πΓ
(

D
2

) rD−2
0 . (92)

For the small-amplitude expansion of oscillatons in the
spatially conformally flat coordinate system the radius
function is r̂ = r

√
B, where B is expanded according to

(32). Using the rescaled radial coordinate ρ = εr, the
mass function can be expanded as

m̂ = ε4−Dm̂(1) + ε6−Dm̂(2) +O
(

ε8−D
)

, (93)

where

m̂(1) = − (D − 1)π
D

2

8πΓ
(

D
2

) ρD−1 dB2

dρ
, (94)

and

m̂(2) = − (D − 1)π
D

2

8πΓ
(

D
2

) ρD−1

[

dB4

dρ

+
ρ

4

(

dB2

dρ

)2

+
D − 4

2
B2

dB2

dρ

]

. (95)

The total mass is the limit at r → ∞,

M = ε4−DM (1) + ε6−DM (2) +O
(

ε8−D
)

. (96)

Since B2 = a2/(2 −D), using the asymptotic form (50)
of a2, we get

M (1) =
(D − 1)π

D

2

8πΓ
(

D
2

) s1 , (97)

agreeing with the leading order coefficient of the proper

mass, M
(1)
p , given in (89). Using (65) for the derivative

of b4,

M (2) = lim
ρ→∞

(D − 1)π
D

2

8πΓ
(

D
2

)

ρD−1

D − 2

[

da
(0)
4

dρ

− ρ

2(D − 2)

(

da2
dρ

)2

− 3

2
a2
da2
dρ

]

, (98)
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which can be easily calculated numerically, since the ex-
pression in the limit tends to a constant exponentially.
The numerical results for the Klein-Gordon field are pre-
sented in Table I. The proper mass and the total mass
agree to leading order. However, taking into account the
next term in the expansion, it turns out that, as it can be
expected, the gravitational binding energy Eb =Mp−M
is positive.
It is instructive to write the expressions for the total

mass in natural units, where the oscillaton mass M is
measured in kilograms while the mass of the scalar field
m in units of eV/c2:

M(D=3) = ε
(

4.66− 5.63 ε2
)

1020kg
eV

mc2
, (99)

M(D=4) =
(

2.94− 14.1 ε2
)

1049kg

(

eV

mc2

)2

, (100)

M(D=5) =
1

ε

(

8.63− 211 ε2
)

1077kg

(

eV

mc2

)3

. (101)

Since O
(

ε4
)

terms were dropped, these expressions are
precise only for small values of ε. However, comparing
to the 3 + 1 dimensional numerical results obtained by
solving the Fourier mode equations in [52], it can be in-
ferred that these total mass expressions give a reasonable
estimate even when ε ≈ 0.5.

C. Size of oscillatons

Although oscillatons are exponentially localized, they
do not have a definite outer surface. A natural defini-
tion for their size is to take the radius rn inside which n
percentage of the mass can be found. It is usual to take,
for example, n = 95. The mass inside a given radius r
can be defined either by the integral (84) replacing the
upper limit by r, or by taking the local mass function m̂
in (18). To leading order in ε both definitions give

M(r) =
(D − 1)π

D

2

8πΓ
(

D
2

) σ(εr) , (102)

where σ has been introduced in (54) as a function of
ρ = εr. The rescaled radius ρn can be defined by

σ(ρn)

σ(∞)
=

n

100
. (103)

The numerical values of ρn for various n in D = 3, 4, 5
dimensions are listed in Table II. Restoring the scalar
field mass m into the expression, the physical radius is

rn =
ρn
εm

. (104)

In natural units, measuring mc2 in electron volts and rn
in meters (Roman m),

rn = 1.97 · 10−7m
ρn
ε

eV

mc2
. (105)

D = 3 D = 4 D = 5

ρ50 2.240 1.778 1.317

ρ90 3.900 3.013 2.284

ρ95 4.471 3.455 2.652

ρ99 5.675 4.410 3.478

ρ99.9 7.239 5.692 4.634

TABLE II: The radius inside which given percentage of the
mass is contained for various spatial dimensions.

Similarly to the total mass expressions in the previous
subsection, this result is still a reasonable approximation
for as large ε values as 0.5.

D. Stability

The stability properties of oscillatons are in many re-
spects very similar to cold neutron and boson stars. Per-
fect fluid stars are known to be stable for small µc cen-
tral densities. As µc increases, the total mass M also
increases, until it reaches a maximal value Mmax, where
according to a theorem in [35], an unstable radial mode
sets in. Boson stars have analogous stability properties
[68]. For oscillatons in the EKG system (for D = 3)
this behavior has also been observed in Refs. [1] and [56].
Oscillatons are closely related to flat background oscil-
lons, which also behave very similarly to neutron and
boson stars. Since we use a small-amplitude expansion
for oscillons and oscillatons it is more instructive to use
the magnitude of the oscillating central amplitude Φc,
instead of the central density µc. The central density is
expected to be a monotonically increasing function of the
central amplitude.
Given the very close analogy with oscillons we formu-

late a general conjecture on the stability of oscillatons.
We recall that in all known examples the stability pat-
tern of oscillons is the same, namely if dE/dε > 0 os-
cillons are stable, while when dE/dε < 0 oscillons are
unstable, where E = E(ε) is the total energy of the os-
cillon [14–16, 25]. Therefore we conjecture that the same
stability pattern holds true for oscillatons, except that
the energy, E is replaced by the total mass M = M(ε)
of the oscillaton. In other words if the time evolution
(i.e. energy/mass loss) of an oscillon/oscillaton leads to
spreading of the core, the oscillon/oscillaton is stable,
while oscillons/oscillatons are unstable if they have to
contract with time evolution. Therefore if the conjecture
is true, the first two terms in the expansion ofM enables
us to determine the stability of oscillatons.
Taking into account the first two terms in (96), for the

D = 3 Klein-Gordon field the total mass has a maximum
at

εmax =

√

−M (1)

3M (2)
≈ 0.525 , (106)

corresponding to the value of the frequency, ωmin ≈
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0.851. Although this is just a leading order result, it
agrees reasonably well with the frequency 0.864 obtained
by the numerical solution of the Fourier mode equations
in [52]. The value of the mass at the maximum is

Mmax =
2

3
εmaxM

(1) ≈ 0.614 , (107)

which is also quite close to the number 0.607 given in
[52].
For an axion withm = 10−5eV/c2 the maximal mass is

Mmax = 1.63·1025kg, which is about three times the mass
of the Earth. The radius of this oscillaton, according to
the leading order approximation (105), is r95 = 16.8 cm,
while its Schwarzschild radius is 2.42 cm.
The mass maximum is very important concerning the

stability of oscillatons. According to [1, 56], for the Klein-
Gordon field in D = 3 small-amplitude oscillatons with
ε < εmax are stable, while those with ε > εmax are unsta-
ble, presumably having a single decay mode. For D = 4
and D = 5 the mass is a monotonically decreasing func-
tion of ε, and all oscillatons are expected to be unstable.
The situation may be totally different for scalar fields
with a nontrivial potential U(φ). For example, for v2 = 0
and v3 = 4, the coefficient M (2) becomes positive, and
there is no maximum on the energy curve in D = 3 di-
mensions, consequently even large amplitude oscillatons
can be expected to be stable. Using this potential in
D = 4 dimensions, for small ε the mass will be a mono-
tonically increasing function, so small-amplitude config-
urations should be stable. For D = 5, in this case, there
is a minimum in the energy curve, above which stable
oscillatons can be expected.

V. RADIATION LAW OF OSCILLATONS

The methods that we apply in this section for the cal-
culation of the radiation law of oscillatons have been al-
ready applied for oscillons formed by scalar fields on flat
background. The extension of the Fourier mode equa-
tions to the complex plane has been first used for the
one-dimensional φ4 theory by Segur and Kruskal [32].
The Borel summation method to calculate the small cor-
rection near the pole has been introduced by Pomeau,
Ramani and Grammaticos [69]. The results has been ex-
tended to higher dimensional oscillons in [16] and to a
scalar-dilaton system in [25].

A. Fourier expansion

Since all terms in the expansion (30)-(32) are exponen-
tially decaying, the small-amplitude expansion can only
be applied to the core region of oscillatons. It cannot
describe the exponentially small radiative tail responsi-
ble for the energy loss. This is closely related to the
fact that the expansion is not convergent, it is an asymp-
totic expansion. Instead of studying a radiating oscil-

laton configuration with slowly varying frequency, it is
simpler to consider exactly periodic solutions having a
relatively large amplitude core and a very small ampli-
tude standing wave tail. We Fourier expand the scalar
and the metric components as

φ =

NF
∑

k=0

φ̄k cos(kωt) , (108)

A = 1 +

NF
∑

k=0

Āk cos(kωt) , (109)

B = 1 +

NF
∑

k=0

B̄k cos(kωt) , (110)

where φ̄k Āk and B̄k only depend on r, and solve the
Fourier mode equations obtained from Einstein’s equa-
tions and the wave equation. Although, in principle, the
Fourier truncation order NF should tend to infinity, one
can expect very good approximation for moderate val-
ues of NF . We assume that the frequency is approaching
from below the mass threshold m = 1, and in this con-
text, define the ε parameter by ε =

√
1− ω2.

Regularity at the center require finite values for φ̄k, Āk

and B̄k for r = 0, together with

dφ̄k
dr

∣

∣

∣

∣

r=0

= 0 ,
dĀk

dr

∣

∣

∣

∣

r=0

= 0 ,
dB̄k

dr

∣

∣

∣

∣

r=0

= 0 . (111)

Concerning the boundary conditions at r → ∞, it is a
natural but quite restrictive requirement to assume that
the metric is asymptotically flat, with the t coordinate
tending to the proper time for large radii. This implies
that Āk → 0 and B̄k → 0 for r → ∞. The Fourier com-
ponents of the wave equation (28) for large r decouple,
and in this case can be written as

d2φ̄n
dr2

+
D − 1

r

dφ̄n
dr

+ (n2ω2 − 1)φ̄n = 0 . (112)

In the relevant frequency range 1/2 < ω < 1, if n ≥
2 these equations have oscillatory solutions, behaving
asymptotically as

φ̄n =
γ
(s)
n

r(D−1)/2
sin
(

r
√

n2ω2 − 1
)

(113)

+
γ
(c)
n

r(D−1)/2
cos
(

r
√

n2ω2 − 1
)

,

where γ
(s)
n and γ

(c)
n are some constants. According to

(83), this oscillating tail has a mass-energy density, µ,

proportional to r1−D. This implies that if γ
(s)
n or γ

(c)
n

is nonzero for any n ≥ 2, the total proper mass of the
spacetime is infinite. The requirement of the vanishing of
all these coefficients together with the central boundary
conditions are clearly too many conditions to satisfy for
the given number of second order differential equations.
In general, regular finite mass exactly periodic solutions
are not expected to exist.
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If we require that γ
(s)
n = 0 and γ

(c)
n = 0 for all n

then all φn tend to zero exponentially, and we have a
finite mass asymptotically flat configuration. However,
in general, this solution will be singular at the center,
hence we name this solution singular breather (SB). For
a given frequency, ω, the singular breather solution is
unique by parameter counting.

Because of their close similarity to oscillatons, it is im-
portant to study another, presumably unique periodic so-
lution, the so called quasibreather (QB) solution, which
is regular at the center, but which has a minimal energy
density standing wave tail. Our aim is to construct the
quasibreather solution from the singular breather solu-
tion. It is important to point out that the quasibreather
picture is only valid inside some large but finite radius.
However small the energy density of the oscillating tail is,
going to very large distances its contribution to the mass
will not be negligible anymore. Consequently, the as-
sumption that Āk and B̄k tends to zero will not remain
true for arbitrarily large values of r, and consequently
Eq. (112) will also change. For sufficiently large values
of r, the metric function A increases until it causes to
change the first radiating mode (either φ2 or φ3) from
oscillating to exponentially decaying. Increasing r fur-
ther, all modes will stop oscillating one by one. This
way we obtain the exactly time-periodic but infinite mass
“breathers” which are described in details in Section IX
of the paper of Don N. Page [31]. The quasibreather
can be considered to be the part of such an infinite mass
”breather” containing the core and a large portion of the
tail where the first radiating mode oscillates, requiring
that the mass inside this region is dominated by that of
the oscillon core. Since the core amplitude is of the or-
der ε2, while the tail is exponentially suppressed in ε,
the quasibreather picture is valid in a sufficiently large
volume.

Since the amplitude of the oscillating tail of the quasi-
breather is very small, apart from a small region around
the center the core of the QB is very close to the cor-
responding singular breather solution. In particular, the
SB and the QB solutions have the same ε expansions.
For the SB solution the small-amplitude expansion will
not be valid in a region near the center r = 0, while
for the QB solution it will fail for large radii where the
oscillating tail becomes dominant. The size of the re-
gion, (0, rdiff), around r = 0 where the difference be-
tween the SB and the regular core becomes relevant is
rdiff = O(e−δ/ε) (with δ being a constant), whereas the
size of the SB or QB core is proportional to 1/ε. Outside
of this region, i.e. for r > rdiff the difference between the
SB and the QB will be very small since the singular mode
turns out to be proportional to the tail amplitude, which
is exponentially small in terms of the small parameter ε,
while the core amplitude is of order ε2.

For potentials U(φ) which are symmetric around their
minima, i.e. v2k = 0 for integer k, the Fourier expansion
of the scalar contains only odd, while that of the metric

components only even terms,

φ̄2k = 0 , Ā2k+1 = 0 , B̄2k+1 = 0 . (114)

For symmetric potentials the first radiating mode is φ̄3.
In this section we will concentrate mainly on the Klein-
Gordon scalar field with vk = 0 for k > 1. It is straight-
forward to generalize the results for symmetric potentials.

For small-amplitude quasibreather or singular breather
configurations we can establish the connection be-
tween the Fourier expansion (108)-(110) and the small-
amplitude expansion (30)-(32) by comparing to (68)-(71).
For symmetric potentials we obtain:

φ̄1 = ε2p2 + ε4p4 +O(ε6) , (115)

φ̄3 = ε6

(

Dp32
64(D − 1)

+
v3p

3
2

32
+
p2a

(2)
4

8

)

+O(ε8) ,

(116)

Ā0 = ε2a2 + ε4a
(0)
4 +O(ε6) , (117)

Ā2 = ε4a
(2)
4 +O(ε6) , (118)

B̄0 = −ε2 a2
D − 2

+ ε4b4 +O(ε6) , (119)

B̄2 = −ε4 p22
4(D − 1)

+O(ε6) . (120)

B. Expansion near the pole

As ε→ 0 the amplitude of all Fourier coefficients tend
to zero. However, extending them to the complex plane,
for small ε they all have pole singularities on the imagi-
nary axis at r = ±iQD/ε, corresponding to the poles of
the Schrödinger-Newton equations at ρ = ±iQD, as it
was discussed in Sec. III E. As ε tends to zero, the poles
move further and further away from the real axis, but
close to them the Fourier components φ̄k, Āk and B̄k are
not getting small, in fact they have ε independent parts.
We introduce a shifted radial coordinate, y, for an “inner
region” around the upper pole by

r =
iQD

ε
+ y . (121)

The coordinate y is related to the one (R) defined in
Eq. (77) by R = εy. Substituting the small-amplitude
expansion results (78)-(82) into (115)-(120), and taking
the limit ε→ 0, it follows that in the Klein-Gordon case,
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near the upper pole

φ̄1 =

(

− 6

y2
+

999D

52(D − 2)y4
+ ...

)

√

D − 1

D − 2
, (122)

φ̄3 =

(

−27(7D− 12)

40(D − 2)y4
+ ...

)

√

D − 1

D − 2
, (123)

Ā0 =
6

y2
− 9(25D + 208)

52(D − 2)y4
+ ... , (124)

Ā2 = − 9(6−D)

5(D − 2)y4
+ ... , (125)

B̄0 = − 6

(D − 2)y2
+

9(333D+ 832)

260(D− 2)2y4
+ ... , (126)

B̄2 = − 9

(D − 2)y4
+ ... . (127)

We note that since (122)-(127) are expansions in 1/y2,
they are valid for large y values. In contrast, (78)-(82)
were calculated assuming small R. Both of these condi-
tions can hold simultaneously, since R = εy.
Expressions (122)-(127) can also be obtained by look-

ing for the solution of the Fourier mode equations in the
ε → 0 limit near the pole as a power series expansion in
1/y2,

φ̄2k+1 =

∞
∑

j=k+1

ψ
(j)
2k+1

1

y2j
, (128)

Ā2k =
∞
∑

j=k+1

α
(j)
2k

1

y2j
, (129)

B̄2k =

∞
∑

j=k+1

β
(j)
2k

1

y2j
, (130)

where ψ
(j)
2k+1, α

(j)
2k and β

(j)
2k are constants. The mode

equations that we have to solve can be obtained from the
Einstein equations (24)-(27) and from the wave equation
(28) by substituting (108)-(110). Equations (24)-(28) are
not independent. The wave equation follows from the
Einstein equations by the contracted Bianchi identities,
and the (t, r) component (26) is a constraint. The trunca-
tion of the Fourier expansion at a finite NF order makes
the mode equations mutually contradictory. However, if
we choose any three field equations from (24)-(28), the
arising mode equations will clearly have solutions. We
have checked that our results for the energy loss rate of
oscillatons are the same for different choices of the three
field equations. We have also tested that the violation
of the mode equations obtained from the other two field
equation tends to zero quickly as NF increases.
Substituting (121) into the field equations (24)-(28)

and taking the ε→ 0 limit close to the pole, some terms
with lower powers of r can be neglected. Then, inserting
the 1/y2 expansion (128)-(130) into the resulting mode
equations, because of the omission of odd powers of 1/y,
the only ambiguity arises at the choice of the signature

of ψ
(1)
1 . The calculation of (122)-(127) using the Fourier

mode equations is technically more simple than using the
small-amplitude expansion method, and can be done by
algebraic manipulation programs to quite high orders in
1/y.
Apart from an overall factor, the leading order behav-

ior of the coefficients ψ
(n)
k , α

(n)
k and β

(n)
k for large n can

be obtained by studying the structure of the mode equa-

tions. It turns out that for large n, ψ
(n)
3 dominates among

the coefficients. For the third Fourier mode of the Klein-
Gordon field,

ψ
(n)
3 = kD(−1)n

(2n− 1)!

8n

[

1 +
3(9D − 10)

2(D − 2)n

+
3(9D − 10)(7D − 8)

2(D − 2)2n2
+O

(

1

n3

)

]

, (131)

where kD is a factor depending on D and NF . All other
coefficients grow slower with n asymptotically. Although
the 1/n and 1/n2 correction terms may depend on the
choice of the scalar potential, the leading order behavior
is the same as in (131) for any symmetric potential. The
value of the constant kD will turn out to be crucial for
the determination of the energy loss rate of oscillatons.
Calculating the coefficients up to order n = 100 and tak-
ing into account Fourier modes up to order NF = 6, in
the Klein-Gordon case we obtain

k3 = −0.301 , (132)

k4 = −0.134 , (133)

k5 = −0.0839 . (134)

C. The singular breather solution near the pole

Expansion (128)-(130) gives an asymptotic series rep-
resentation of the Fourier components φ̄k, Āk and B̄k.
The results (122)-(127) can be considered as boundary
conditions for the Fourier mode equations for

|y| → ∞ , −π/2 < arg y < 0 , (135)

ensuring a unique solution for the “inner problem”. This
corresponds to the requirement that φ decays to zero
without any oscillating tail for r → ∞ along the positive
half of the real axis, i.e. we consider a singular breather
solution.
The Fourier components of the wave equation (28) can

be written as

d2φ̄n
dr2

+
D − 1

r

dφ̄n
dr

+ (n2ω2 − 1)φ̄n = Fn , (136)

where Fn contain nonlinear polynomial terms in φ̄k, Āk,
B̄k and their derivatives for k ≤ NF . Using the y coor-
dinate near the pole and taking the ε→ 0 limit,

d2φ̄n
dy2

+ (n2 − 1)φ̄n = F̃n , (137)
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where F̃n denotes the ε → 0 limit of Fn. On the imagi-
nary axis the 1/y2 expansion gives real valued functions
to all orders. As singular breather solutions of the mode
equations, with boundary conditions (122)-(127) in the
region given by (135), the functions φ̄SB

n can have small
imaginary parts on the imaginary axis, satisfying the left
hand side of (137) to a good approximation. For sym-
metric potentials the first radiating component is φ̄3. The
singular breather solution can have an exponentially de-
caying small imaginary part on the imaginary axis,

Im φ̄SB
3 = ν3 exp(−i

√
8y) for Re y = 0 , (138)

where ν3 is some constant. On the other hand, since
the quasibreather solution of the mode equations is reg-

ular and symmetric, φ̄QB
3 has zero imaginary part on the

imaginary axis.
For symmetric potentials the value of ν3 can be ob-

tained by Borel summing the series (128) for φ̄3 [69].
The first step is to define a Borel transformed series by

V (z) =
∞
∑

n=2

ψ
(n)
3

(2n)!
z2n . (139)

Then the Laplace transform of V (z) will give us the Borel

summed series of φ̄SB
3 (y) which we denote by φ̂SB

3 (y),

φ̂SB
3 (y) =

∫ ∞

0

dt e−tV

(

t

y

)

. (140)

We are only interested in the imaginary part of φ̂SB
3 (y)

on the negative imaginary axis, y = −iyi, where yi > 0
real. Then the argument of V is z = t/y = it/yi, which
is pure imaginary with positive imaginary part. Since all
terms in (139) contain even powers of z, no individual

term gives a contribution to Im φ̂SB
3 on the imaginary

axis. The value of Im φ̂SB
3 is determined there by the

leading order large n behavior of the series (139). Using
(131) and including a term proportional to z2,

V (z) ∼
∞
∑

n=1

kD
(−1)n

2n

(

z√
8

)2n

= −kD
2

ln

(

1 +
z2

8

)

,

(141)
where the sign ∼ denotes equality up to terms that do

not give contribution to the imaginary part of φ̂SB
3 on

the imaginary axis. Transforming the argument of the
logarithm into product form, only one of the factors gives
a contribution,

V (z) ∼ −kD
2

ln

(

1 +
iz√
8

)

. (142)

For purely imaginary y,

V

(

t

y

)

∼ −kD
2

ln

(

1− t

yi
√
8

)

. (143)

In this case, for t > yi
√
8 we have to integrate along the

branch cut of the logarithm function. In order to see

how to go around the singularity at t = yi
√
8 we note

that according to (135), the 1/y2 expansion (128)-(130)
has been applied for y = yr − iyi, where yr and yi are
positive and real. This corresponds to the requirement of
exponential decay for r > 0 along the real r axis. Then

iz =
t

y2r + y2i
(−yi + iyr) , (144)

which shows that the argument of the logarithm in (142)
has to go around the singularity in the upper half of the
complex plane. This means that we approach the branch
cut of the logarithm at the negative part of the real axis
from above, where its imaginary part is π. Then for
purely imaginary y we can evaluate the imaginary part
of the integral (140) by integrating on the branch cut,

Im φ̂SB
3 (y) = −

∫ ∞

i
√
8 y

dt e−t kDπ

2

= −kDπ
2

exp
(

−i
√
8 y
)

. (145)

The logarithmic singularity of V (t/y) does not con-
tribute to the integral. Comparing with (138),

ν3 = −1

2
kDπ . (146)

For asymmetric potentials the leading order radiating
component will be in φ̄2, and

Im φ̄SB
2 = ν2 exp(−i

√
3y) for Re y = 0 . (147)

Because the dominant behavior of φ̄0, it is not possible to
determine the constant ν2 by the Borel summation. Its
value can be calculated by numerical integration of the
Fourier mode equations, following the method presented
in [32] and [15].
It is reassuring that even though we work with a trun-

cated set of mode equations Birkhoff’s theorem still holds

in the following sense. Neither α
(n)
k nor β

(n)
k has an ap-

propriately singular behavior so that they generate an
imaginary correction on the imaginary axis for Āk and
B̄k. The Borel summation procedure does not produce
gravitational radiation.

D. Construction of the quasibreather

As we have already discussed, both the singular
breather (SB), and the quasibreather (QB) solutions
are well approximated in a large domain by the small-
amplitude expansion. Since the tail is exponentially sup-
pressed in ε, apart from a small central region around
r = 0, where the SB solution gets too large, the QB
and SB solutions are extremely close to each other. We
denote the difference in the first radiating Fourier com-
ponent φ̄3 of the two solutions by

φ̄w3 = φ̄QB
3 − φ̄SB

3 . (148)
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The small function φ̄w3 solves the linearization of the wave
equation around the singular breather solution. To lead-
ing order in ε this reduces to the flat background wave
equation

d2φ̄w3
dr2

+
D − 1

r

dφ̄w3
dr

+ 8φ̄w3 = 0 . (149)

The general solution of (149) can be written as

φ̄w3 =
4
√
2
√
π

rD/2−1

[

αDYD/2−1(
√
8r) + βDJD/2−1(

√
8r)
]

,

(150)
where J and Y are Bessel functions of the first and sec-
ond kinds, and αD, βD are constants. The asymptotic
behavior of the Bessel functions is

Jν(x) ≈
√

2

πx
cos
(

x− νπ

2
− π

4

)

, (151)

Yν(x) ≈
√

2

πx
sin
(

x− νπ

2
− π

4

)

, (152)

for arg x < π and |x| → ∞. The constants αD and βD
describe the amplitude of the standing wave tails in φ̄w3 ,
since for large distances from the center,

φ̄w3 ≈ 1

r(D−1)/2

{

αD sin
[√

8 r − (D − 1)
π

4

]

(153)

+ βD cos
[√

8 r − (D − 1)
π

4

]

}

.

Since the SB solution is exponentially decaying, this will
also be the tail of the QB configuration.
The second term in (150) gives a purely real contribu-

tion to φ̄w3 on the imaginary axis. However, converting
(152) into exponential form,

Yν(x) ≈
1√
2πx

{

exp

[

ix− iπ

4
(2ν + 3)

]

(154)

+ exp

[

−ix+ iπ

4
(2ν + 3)

]}

,

we see that the first term in (150) yields an exponen-
tially behaving imaginary part along the imaginary axis.
Close to the upper pole at iQD/ε, using the coordinate
y defined in (121), to leading order in ε we obtain that

Im φ̄w3 =
αD

2

(

ε

QD

)
D−1

2

exp

(√
8QD

ε
− i

√
8 y

)

, (155)

for Re y = 0. Since our aim is to obtain a non-singular
QB solution which is symmetric for r → −r for real r,
(155) must cancel the exponential behavior of Im φ̄SB

3

given by (138). This fixes the amplitude αD,

αD = −2ν3

(

QD

ε

)
D−1

2

exp

(

−
√
8QD

ε

)

. (156)

Substituting the value of ν3 from (146), obtained by the
Borel summation,

αD = kDπ

(

QD

ε

)
D−1

2

exp

(

−
√
8QD

ε

)

. (157)

For any value of βD the second term in (150) gives
a regular symmetric contribution to φ̄w3 , which does not
change the behavior of the imaginary part on the real
axis. However, as it is apparent from (153), any nonzero
βD necessarily increases the tail amplitude, and conse-
quently the energy density in the tail as well. Hence, in
order to obtain the minimal tail quasibreather, we set

βD = 0 . (158)

The standing wave tail of the quasibreather in the
asymptotic region is given by the first term of (150),

φQB =
4
√
2
√
π

αD

rD/2−1
YD/2−1(

√
8r) cos(3τ) (159)

≈ αD

r(D−1)/2
sin
[√

8r − (D − 1)
π

4

]

cos(3τ) .

Subtracting the regular solution involving the Bessel
function Jν with a phase shift in time, we cancel the
incoming radiating component, and obtain the radiative
tail of the oscillaton,

φosc =
4
√
2
√
π

αD

rD/2−1

[

YD/2−1(
√
8r) cos(3τ)

− JD/2−1(
√
8r) sin(3τ)

]

≈ αD

r(D−1)/2
sin
[√

8r − (D − 1)
π

4
− 3τ

]

. (160)

Equations (159) and (160) are valid for symmetric po-
tentials. In both cases, the amplitude of the tail of φ
at large r is given by αD. According to (8), the physi-

cal amplitude is αD/
√
8π. Since the transformation (11)

changes the coordinates, αD scales as m(1−D)/2 with the
scalar field mass m.

E. Tail amplitude

The scalar field tail calculated in the previous subsec-
tion is so small that it is not surprising that it has not
been detected by numerically solving the Fourier mode
equations in [1] and [52]. In order to relate the magni-
tude of the oscillating tail to the central amplitude, we
represent φ in the core region by φ = ε2p2 cos τ , and in
the tail by (159). The tail starts to dominate at a radius
r = rt where

φ(τ = 0, r) = ε2p2(εr) = ε2S(εr)

√

D − 1

D − 2
(161)

equals to αDr
(1−D)/2. Since s ≈ −1+s1ρ

2−D for large ρ,
the asymptotic behavior of S in the relevant dimensions
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is

SD=3(ρ) = Ste
−ρρs1/2−1

[

1− s1(s1 − 2)

8ρ
+O

(

1

ρ2

)]

,

(162)

SD=4(ρ) = St
e−ρ

ρ3/2

[

1− 4s1 − 3

8ρ
+O

(

1

ρ2

)]

, (163)

SD=5(ρ) = St
e−ρ

ρ2

[

1 +
1

ρ
− s1

4ρ2
+O

(

1

ρ4

)]

, (164)

where the constants s1 and St are given in Table III. The

D = 3 D = 4 D = 5

s1 3.505 7.695 10.40

St 3.495 88.24 23.39

TABLE III: The numerical values of the constants s1 and St

in 3, 4 and 5 spatial dimensions.

values of rt and the amplitude of the tail at that radius,

Φt = αDr
(1−D)/2
t /

√
8π for several ε are given in Table

IV.

D = 3 D = 4 D = 5

ε rt Φt rt Φt rt Φt

0.1 1160 8.96 · 10−52 648 2.76 · 10−32 346 4.42 · 10−20

0.2 302 4.63 · 10−27 168 1.06 · 10−17 92.6 6.01 · 10−12

0.3 140 9.28 · 10−19 78.2 9.45 · 10−13 45.0 3.83 · 10−9

0.4 81.6 1.40 · 10−14 46.4 3.07 · 10−10 27.9 1.03 · 10−7

0.5 54.3 4.68 · 10−12 31.5 1.03 · 10−8 19.8 7.56 · 10−7

0.6 39.2 2.30 · 10−10 23.2 1.09 · 10−7 15.1 2.87 · 10−6

0.7 29.9 3.76 · 10−9 18.0 5.91 · 10−7 12.2 7.42 · 10−6

0.8 23.8 3.08 · 10−8 14.6 2.12 · 10−6 10.3 1.51 · 10−5

TABLE IV: The radius rt where the oscillating tail starts to
dominate, and its amplitude Φt there.

The tail amplitude should be compared to the central
amplitude

Φc = ε2Φ1c , Φ1c =
Sc√
8π

√

D − 1

D − 2
, (165)

where the constants Sc and Φ1c are given in Table V.
The radius rt where the tail starts to dominate is much

D = 3 D = 4 D = 5

Sc 1.021 3.542 14.02

Φ1c 0.288 0.865 3.229

ρh 2.218 1.357 0.763

TABLE V: The numerical values of the constants Sc, Φ1c

and ρh, which determine the central amplitude Φc and the
characteristic size rh.

larger than the characteristic radius of the core, which

can be defined as the radius rh where Φ = Φc/2. Clearly,
rh = ρh/ε, where ρh is the value of ρ for which S = Sc/2.
The value of ρh for various spatial dimensions D is also
given in Table V. Clearly, there is only some chance
to numerically observe the tail for as large ε values as
0.5, which for D = 3 is close to the maximum value
εmax ≈ 0.525. It can also be observed from Table IV,
that for larger spatial dimensions the radiation is signif-
icantly stronger. It would be reasonable to first make
the numerical analysis for D = 5, since then the tail has
the largest amplitude. Even if the Klein-Gordon oscilla-
tons are unstable in D = 5, as we have seen in Section
IVB, there are scalar potentials, for which large ampli-
tude oscillatons are stable. Since the exponent in (157) is
potential independent, in general, we expect to get a tail
amplitude of similar magnitude as for the Klein-Gordon
field.

F. Mass loss rate

Since at large distances from the center the mass func-
tion m̂ agrees with the total mass M , the mass change
rate of the oscillaton can be calculated from the energy
current carried by the wave (160) using (22). Averaging
for an oscillation period,

dM

dt
= − c1

mD−3εD−1
exp

(

−c2
ε

)

, (166)

where the D dependent constants are

c1 = 3
√
2k2DQ

D−1
D

πD/2+1

4Γ
(

D
2

) , c2 = 2
√
8QD . (167)

The numerical values of c1 and c2 for various spatial di-
mensions are listed in Table VI. The values of c2 are the

D = 3 D = 4 D = 5

c1 30.0 7.23 0.720

c2 22.4993 13.0372 6.99159

TABLE VI: The constants c1 and c2 in the mass loss rate
expression (166) for D = 3, 4, 5 spatial dimensions.

same for any symmetric potential, but the numbers given
for c1 are valid only for the Klein-Gordon field.
The higher ε is, the more chance we have to observe the

presumably tiny energy loss. As we have seen in subsec-
tion IVB, for D = 3 spatial dimensions oscillons are sta-
ble for ε < εmax ≈ 0.525. The total mass is maximal at
εmax. Restoring the scalar field mass m into the expres-
sions, the maximal mass value is Mmax = 0.614/m. Sub-
stituting into (166), for the maximal mass Klein-Gordon
oscillaton we get

(

1

M

dM

dt

)

M=Mmax

= −4.3 · 10−17m. (168)
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This expression is valid in Planck units. Expressing M
in kilograms, and mc2 in electron volts the maximal os-
cillaton mass is

Mmax = 0.614mPEP /m = 1.63 · 1020kg eV
mc2

, (169)

where the Planck mass is mP = 2.18 · 10−8kg and the
Planck energy is EP = 1.22 · 1028eV . Expressing t in
seconds, since tp = 5.39 · 10−44s, for the maximal mass
configuration we get

(

1

M

dM

dt

)

M=Mmax

= −0.066

s

mc2

eV
. (170)

Note that we only determined the leading order result for
the radiation amplitude. We saw hints that the small-
amplitude results give sensible answers for moderate ε
values, however we do not have a good control over non-
leading terms in the radiation amplitude. In general for
such high ε values we expect to have the same exponential
factor, but with a different prefactor c1 [15, 16, 25]. The
order of magnitude should be nevertheless correct.
According to (96), for D = 3 spatial dimensions, to

leading order the total mass is proportional to the am-
plitude. M = εM (1)/m, where from Table I, M (1) =
1.75266. Substituting into (166), for the Klein-Gordon
case this yields

dM

dt
= − c3

m2M2
exp

(

− c4
mM

)

. (171)

where

c3 = 92.2 , c4 = 39.4337 . (172)

Expression (171) has the same form as the classical mass
loss formula (122) of [31], although the constant corre-
sponding to c3 is much larger there, it is 3797437.776.
This means that the amplitude of the radiating tail of
the scalar field Φ is overestimated by a factor 202.9 in
[31]. In order to understand the reason for this large
difference, and why it is necessary to use our more com-
plicated approach to obtain a correct mass loss rate, we
first describe the method of [31] in our formalism.
For a D = 3 Klein-Gordon system let us consider the

third Fourier component (136) of the wave equation (28)
in the ω → 1 limit. Taking the results (115)-(120) of
the small-amplitude expansion, and substituting into the
nonlinear terms on right hand side of (136), we obtain
an inhomogeneous linear differential equation for φ̄3,

d2φ̄3
dr2

+
2

r

dφ̄3
dr

+ 8φ̄3 = P (r) . (173)

Here the function P (r) is given by the small-amplitude
expansion, in a power series form in ε,

P (r) =

∞
∑

k=3

P2k(r)ε
2k . (174)

For the D = 3 Klein-Gordon system the leading order
term is

P6(r) =
3

16
p32(εr) + p2a

(2)
4 (εr) . (175)

Equation (173) with P (r) = ε6P6(r), but setting a
(2)
4 =

0, corresponds to equation (52) of [31]. Since there the
Fourier modes are defined in terms of exponentials in-
stead of cosine functions, the coefficient of the p32 term
is 3/4 in [31] instead of 3/16. The term containing

a
(2)
4 is missing there because of the assumption that the
gtt = −A metric component is time independent. How-
ever, at ε4 order either gtt becomes oscillatory, or the
spatial metric ceases to be conformally flat.
The oscillating tail responsible for the radiation loss in

the φ̄3 mode can be estimated by integrating (173) using
the Green function method,

φ̄3(r) =
cos(

√
8r)√

8r

∫ r

0

r̄ sin(
√
8r̄)P (r̄)dr̄ (176)

+
sin(

√
8r)√

8r

∫ ∞

r

r̄ cos(
√
8r̄)P (r̄)dr̄ .

The oscillaton core is exponentially localized, hence in
the tail region it is a very good approximation to write

φ̄3(r) = ᾱ
cos(

√
8r)

r
, (177)

where the constant determining the amplitude is

ᾱ =
1√
8

∫ ∞

0

r sin(
√
8r)P (r)dr . (178)

Since the functions describing the oscillaton by the ε ex-
pansion are symmetric around r = 0, and since the sine
function can be written as the difference of two exponen-
tials,

ᾱ =
1

2i
√
8

∫ ∞

−∞
r exp(

√
8ir)P (r)dr . (179)

The functions in the small-amplitude expansion depend
directly on the rescaled radial coordinate ρ = εr, so it is
natural to write the integral into the form

ᾱ =
1

2i
√
8ε2

∫ ∞

−∞
ρ exp

(√
8iρ

ε

)

P
(ρ

ε

)

dρ . (180)

This can be replaced by a contour integral around the
upper plane, and can be approximated by taking into
account the pole which is closest to the real axis. The
position of the closest pole is the same as that of the
SN equations (45) and (46), it is at ρ = iQ3 on the
imaginary axis. Let us first calculate the contribution
from the leading P6 term, given by (175). Then, since

for three spatial dimensions p2 =
√
2S, using (78) and

(82), the behavior near the pole is

P
(ρ

ε

)

≈ ε6P6

(ρ

ε

)

≈ −35
√
2ε6

5R6
, (181)
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where R = iQ3− ρ. The omission of the term containing

a
(2)
4 from (175) results in a value which is 5/3 times that

of (181). The residue can be calculated by integrating
by parts five times,

ᾱ = −2334
√
2πQ3

52ε
exp

(

−
√
8Q3

ε

)

. (182)

This amplitude is much larger than the amplitude α3

calculated by the Borel summation method in (157),

ᾱ

α3
= −2434

√
2

52k3
≈ 121.8 . (183)

If we omit the term containing a
(2)
4 from (175), we have

a 5/3 factor, and get ᾱ/α3 = 202.9, which is the ratio
of the tail amplitude of [31] to our value, as we have
mentioned after Eq. (172).
The fundamental problem with the above calculated

tail amplitude ᾱ is that it is just the first term of an infi-
nite series, of which all terms give contributions which are
the same order in ε. This can be illustrated by calculating
the contribution of the next term in P (r). Although the
small-amplitude expansion yields a rather complicated
expression for P8(r), it contains terms proportional to

p32a2, p4a
(2)
4 and p2a2a

(2)
4 , which have eighth order poles.

When calculating the integral (180) one has to integrate
by parts seven times, so the result will have the same ε
order as the earlier result calculated from the P6(r) term.
Even if we could calculate higher order contributions, we
have no reason to expect that the series converges, and
even if it would be convergent it may not give a correct
result for the mass loss. This has already been demon-
strated for the simpler system of a real scalar field with a
nontrivial interaction potential on flat Minkowski back-
ground. It was first pointed out in [70] that there are
too many boundary conditions to satisfy when solving
the Fourier mode equations in order to find periodic lo-
calized breather solutions. In [70] the energy loss rate
of the long living oscillon configurations was estimated
by a method analogous to that of [31]. However, cal-
culating higher order contributions, it turned out that
the method gives an incorrect nonzero result even for the
periodic sine-Gordon breather. Moreover, the expansion
is not convergent for the φ4 scalar theory. The proper
approach to calculate the lifetime of oscillons has been
worked out by [32] and [69], using complex extension and
Borel summation. As a result of the above arguments,
the correct value of c3 in the mass loss rate expression
(171) for the D = 3 Klein-Gordon field is c3 = 92.2.
Although the expression (171) is correct for small val-

ues of M , since it is based on the assumption that M
depends linearly on ε, one should not apply it to mass
values close toMmax. For example, substituting the value
of the maximal massMmax = 0.614/m into (171), we ob-
tain

(

1

M

dM

dt

)

M=Mmax

= −5.0 · 10−26m, (184)

which is 9 magnitudes smaller than the maximal mass
loss rate obtained in (168). The reason for this huge
difference is that according to the linear expression M =
εM (1), to the mass value Mmax = 0.614/m belongs an ε
value of 0.350. At that ε we obviously get a significantly
lower radiation than at εmax ≈ 0.525, because of the
exponential dependence. Since expression (168) does not
involve this approximation, we expect it to give a more
reliable result.

G. Time dependence

Instead of using (171) to determine the time depen-
dence of the oscillaton mass, in order to obtain results
that are valid for larger mass values, we work out a
method involving a higher order approximation for the
ε dependence of the mass. Since the first two terms of
(96) determine the mass maximum to a good precision,
we expect it to be a reasonable approximation for close
to maximal ε values. Including the scalar field mass m,
we use

M = ε4−Dm2−D
(

M (1) + ε2M (2)
)

. (185)

Taking the time derivative and comparing with (166),

dt

dε
= −ε

2

m

(

β1 + β2ε
2
)

exp
(c2
ε

)

, (186)

where

β1 =
4−D

c1
M (1) , β2 =

6−D

c1
M (2) . (187)

This can be integrated in terms of the exponential inte-
gral function,

t− t0 = − ε

120m

[

20β1
(

c22 + c2ε+ 2ε2
)

+ β2
(

c42 + c32ε+ 2c22ε
2 + 6c2ε

3 + 24ε4
)]

exp
(c2
ε

)

+
c32

120m

(

20β1 + β2c
2
2

)

Ei
(c2
ε

)

. (188)

Taking the expansion of the result, for small ε,

t− t0 =
ε4

m

[

β1
c2

+
4β1
c22

ε (189)

+
20β1 + β2c

2
2

c32

(

ε2 +
6ε3

c2
+O

(

ε4
)

)]

exp
(c2
ε

)

.

Although the correction from the subleading term M (2)

only appears in the third term in the bracket, its influence
for ε ≈ 0.5 is not negligible. It can be also seen that for
D = 4 we have β1 = 0, and (189) starts with an ε6 term.
The elapsed time as a function of the oscillaton mass can
be obtained by expressing ε from (185) and substituting
into (189).
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For D = 3 spatial dimensions it is natural to start with
a maximal mass configuration M = Mmax, and wait for
the mass to decrease until the ratio M/Mmax reaches a
given value. Since the elapsed time t is inversely propor-
tional to the scalar field mass m, in table VII we list the
product tm.

Mmax−M

Mmax
ε tm t

year
mc2

eV

0.01 0.482 5.35 · 1016 1.12 · 10−6

0.1 0.383 3.00 · 1021 6.26 · 10−2

0.2 0.320 1.50 · 1026 3.12 · 103

0.3 0.269 4.42 · 1031 9.22 · 108

0.31884 0.260 6.57 · 1032 1.37 · 1010

0.4 0.224 3.99 · 1038 8.32 · 1015

0.5 0.182 1.22 · 1048 2.55 · 1025

0.6 0.144 1.28 · 1062 2.67 · 1039

0.7 0.107 1.94 · 1085 4.04 · 1062

TABLE VII: The time necessary for the oscillaton mass to
decrease to M from the value Mmax at t = 0. The value of tm
is given in Planck units, and also when the time is measured
in years and the scalar mass in electron volts.

Next we address the question that how much of its
mass an initially maximal mass oscillaton loses during the
age of the universe, which we take to be 1.37 · 1010 years.
In Table VIII we list the resulting oscillaton masses in
units of solar masses (M⊙), as a function of the scalar
field mass in eV/c2 units. In order to facilitate com-

mc2

eV
εmax − ε M

M⊙

Mmax−M

Mmax

10−35 5.09 · 10−20 8.20 · 1024 1.41 · 10−38

10−30 5.09 · 10−15 8.20 · 1019 1.41 · 10−28

10−25 5.09 · 10−10 8.20 · 1014 1.41 · 10−18

10−20 5.08 · 10−5 8.20 · 109 1.40 · 10−8

10−15 0.0704 7.99 · 104 0.0258

10−10 0.163 7.14 · 10−1 0.129

10−5 0.223 6.30 · 10−6 0.232

1 0.266 5.58 · 10−11 0.319

105 0.297 5.00 · 10−16 0.390

1010 0.322 4.52 · 10−21 0.449

1015 0.342 4.12 · 10−26 0.498

TABLE VIII: Mass M of an initially maximal mass oscillaton
after a period corresponding to the age of the universe for
various scalar field masses. The decrease in ε from εmax =
0.525, and the relative mass change rate (Mmax −M)/Mmax

is also given.

parison, we have chosen the same scalar field masses as
in Eq. (178) of [31]. The first two orders of the small-
amplitude expansion yielded mMmax = 0.614 in Planck

units for the maximal mass of the oscillaton. Taking
the scalar mass in electron volts, this corresponds to
Mmax = 8.20 ·10−11M⊙eV/(mc

2), which was used in Ta-
ble VIII. The value mMmax = 0.607 from the numerical
solution of the Fourier mode equations calculated in [51]
corresponds toMmax = 8.11·10−11M⊙eV/(mc

2) in natu-
ral units, which is the value used in [31]. Comparing our
Table VIII to the numbers in (178) of [31], after compen-
sating for the shift in the initial mass, it is apparent, that
for small scalar field masses, i.e. for m ≤ 10−10eV/c2, os-
cillatons decay more slowly in [31]. The reason for this
is that [31] uses a linear dependence of the mass on the
small parameter, and consequently underestimates the
radiation rate close to the maximum mass, similarly as
we did in (184). For m ≥ 10−5eV/c2 oscillatons radiate
faster in [31], which is a consequence of the much larger
value of the constant c3 in the mass loss law (171) used
there. In spite of the differences, the overall picture re-
mains essentially the same. For all scalar field masses
that appear physically reasonable, a maximal mass oscil-
laton loses a significant part of its mass during the life-
time of the universe. This mass decrease is greater than
10% if m > 4.57 · 10−12eV/c2, but it remains below 50%
if m < 1.85 · 1015eV/c2. The above results support the
possibility that provided a scalar field exist in Nature,
at least some of the dark matter content of our Universe
would be in the form of oscillatons.

VI. CONCLUSIONS

We have derived an infinite set of radial ODEs de-
termining the spatial field profiles of bounded solutions
of time-dependent, spherically symmetric Einstein-scalar
field equations in the limit when the scalar field am-
plitude tends to zero. The lowest order equations are
nothing but the D-dimensional generalization of the
Schrödinger-Newton (SN) eqs. The SN eqs. admit glob-
ally regular, exponentially decreasing solutions for spatial
dimensions 2 < D < 6. The eqs. corresponding to higher
orders in the expansion are linear inhomogenous ODEs.
The class of solutions we are interested in are oscilla-
tons, which loose slowly their mass by scalar radiation.
In the small-amplitude expansion we have obtained an
asymptotic series for the spatially well localized core of
oscillatons and related their radiation amplitude to that
of the standing wave tail of exactly time-periodic quasi-
breathers. For the class of symmetric scalar potentials
we have determined the amplitude of the standing wave
tail of time-periodic quasibreathers analytically adapting
the method of Segur-Kruskal and using Borel summation.
We have explicitly computed the mass loss rate for the
Einstein-Klein-Gordon system in D = 3, 4, 5.
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Appendix A: Einstein tensor and the wave equation

The components of the Einstein tensor in the general spherically symmetric coordinate system (12) are

Gtt = (D − 1)







B,tC,t

4BC
− A

4C,r

[

(C,r)
2

BC

]

,r

+ (D − 2)
A

2C

[

1 +
(C,t)

2

4AC
− (C,r)

2

4BC

]







, (A1)

Grr = (D − 1)
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4AC
− B
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[
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2

AC

]

,t

− (D − 2)
B

2C

[

1 +
(C,t)

2

4AC
− (C,r)

2

4BC

]







, (A2)

Gtr = −(D − 1)

[

A

4
√
C

(

C,t

A
√
C

)

,r

+
B

4
√
C

(

C,r

B
√
C

)

,t

]

, (A3)

Gθ1θ1 =
C

4A,r

[

(A,r)
2

AB

]

,r

− C

4B,t

[

(B,t)
2

AB

]

,t
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{

1 +
1
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B (C,t)
2

A

]
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A (C,r)
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+
1

2
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[

1 +
(C,t)

2

4AC
− (C,r)

2

4BC

]}

, (A4)

Gθnθn = Gθ1θ1

n−1
∏

k=1

sin2 θk . (A5)

The wave equation (4) takes the form

φ,rr
B

− φ,tt
A

+
φ,r

2ACD−1

(

ACD−1

B

)

,r

− φ,t
2BCD−1

(

BCD−1

A

)

,t

− Ū ′(φ) = 0 . (A6)

Appendix B: Small-amplitude expansion in

Schwarzschild coordinates

In the main part of the paper we have used the spatially
conformally flat coordinate system C = r2B. In this
appendix we present the results of the ε expansion in C =
r2 Schwarzschild area coordinates, in order to compare
and to point out the disadvantages. The time dependence
of the scalar field φ and the metric components A and B
up to ε2 order are

φ = ε2p2 cos τ +O(ε4) , (B1)

A = 1 + ε2a2 + ε2a
(2)
2 cos(2τ) +O(ε4) , (B2)

B = 1 + ε2b2 +O(ε4) , (B3)

where p2, a2, a
(2)
2 and b2 are functions of ρ. The functions

a2 and p2 are again determined by the coupled differential
equations (42) and (43), resulting in the Schrödinger-
Newton equations. However, b2 is determined as

b2 =
ρ

D − 2

da2
dρ

, (B4)

instead of (41). The most important difference is the ap-
pearance of the cos(2τ) term in (B2), causing an ε2 or-

der oscillation in the metric component gtt. In spatially
conformally flat coordinates there are only ε4 order os-
cillating terms in the metric components. The amplitude
of the oscillation is determined by the field equations as

a
(2)
2 = −a2 − b2 . (B5)

Substituting into the expression (72) of the magnitude
of the acceleration of constant (r, θ1, θ2...) observers, to
leading order we get

a =
ε3

2

(

da2
dρ

+
da

(2)
2

dρ
cos(2τ)

)

. (B6)
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Rev. D 79, 065002 (2009).
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814 (2006).
[50] A. Bernal and F. S. Guzmán, Phys. Rev. D 74, 063504

(2006).
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