16,477 research outputs found

    Empirical modelling and simulation of transmission loss between wireless sensor nodes in gas turbine engines

    Get PDF
    Transmission loss measurements between a grid of hypothetical WSN node locations on the surface of a gas turbine engine are reported for eight frequencies at 1 GHz intervals in the frequency range 3.0 to 11.0 GHz. An empirical transmission loss model is derived from the measurements. The model is incorporated into an existing system channel model implemented using Simulink as part of a wider project concerning the development of WSNs for the testing and condition monitoring of gas turbine engines

    Reversal and Termination of Current-Induced Domain Wall Motion via Magnonic Spin-Transfer Torque

    Get PDF
    We investigate the domain wall dynamics of a ferromagnetic wire under the combined influence of a spin-polarized current and magnonic spin-transfer torque generated by an external field, taking also into account Rashba spin-orbit coupling interactions. It is demonstrated that current-induced motion of the domain wall may be completely reversed in an oscillatory fashion by applying a magnonic spin-transfer torque as long as the spin-wave velocity is sufficiently high. Moreover, we show that the motion of the domain wall may be fully terminated by means of the generation of spin-waves, suggesting the possibility to pin the domain-walls to predetermined locations. We also discuss how strong spin-orbit interactions modify these results.Comment: Accepted for publication in Phys. Rev.

    Spontaneous Chiral-Symmetry Breaking in Three-Dimensional QED with a Chern--Simons Term

    Full text link
    In three-dimensional QED with a Chern--Simons term we study the phase structure associated with chiral-symmetry breaking in the framework of the Schwinger--Dyson equation. We give detailed analyses on the analytical and numerical solutions for the Schwinger--Dyson equation of the fermion propagator, where the nonlocal gauge-fixing procedure is adopted to avoid wave-function renormalization for the fermion. In the absence of the Chern--Simons term, there exists a finite critical number of four-component fermion flavors, at which a continuous (infinite-order) chiral phase transition takes place and below which the chiral symmetry is spontaneously broken. In the presence of the Chern--Simons term, we find that the spontaneous chiral-symmetry-breaking transition continues to exist, but the type of phase transition turns into a discontinuous first-order transition. A simple stability argument is given based on the effective potential, whose stationary point gives the solution of the Schwinger-Dyson equation.Comment: 34 pages, revtex, with 9 postscriptfigures appended (uuencoded

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Infrared divergence in QED3_3 at finite temperature

    Full text link
    We consider various ways of treating the infrared divergence which appears in the dynamically generated fermion mass, when the transverse part of the photon propagator in N flavour QED3QED_{3} at finite temperature is included in the Matsubara formalism. This divergence is likely to be an artefact of taking into account only the leading order term in the 1N1 \over N expansion when we calculate the photon propagator and is handled here phenomenologically by means of an infrared cutoff. Inserting both the longitudinal and the transverse part of the photon propagator in the Schwinger-Dyson equation we find the dependence of the dynamically generated fermion mass on the temperature and the cutoff parameters. It turns out that consistency with certain statistical physics arguments imposes conditions on the cutoff parameters. For parameters in the allowed range of values we find that the ratio r=2Mass(T=0)/criticaltemperaturer=2*Mass(T=0)/critical temperature is approximately 6, consistently with previous calculations which neglected the transverse photon contribution.Comment: 37 pages, 12 figures, typos corrected, references added, Introduction rewritte

    Local transport in a disorder-stabilized correlated insulating phase

    Get PDF
    We report the experimental realization of a correlated insulating phase in 2D GaAs/AlGaAs heterostructures at low electron densities in a limited window of background disorder. This has been achieved at mesoscopic length scales, where the insulating phase is characterized by a universal hopping transport mechanism. Transport in this regime is determined only by the average electron separation, independent of the topology of background disorder. We have discussed this observation in terms of a pinned electron solid ground state, stabilized by mutual interplay of disorder and Coulomb interaction.Comment: 4+delta pages, 4 figures, To appear in the Physical Review B (Rapid Comm

    Improving psychological skill in trainee interpreters

    Get PDF
    The general effects of self-efficacy and explanatory style on performance have been thoroughly researched in the field of psychology. This article is based on Atkinson’s (2012) psychological skill model, which attempts to construct these factors to complement traditional conceptions of interpreter and translator skill, and apply them to interpreter and translator training. This article is a discussion of psychological skill, including factors of self-efficacy, explanatory style, and locus of control, and outlines how self-efficacy and explanatory style can become a focus of interpreter training. Resources to help students conduct self-analysis on their occupational self-efficacy and explanatory style are provided in the appendices, in the form of scales educators can use in their classes. A range of ideas are highlighted to assist students in becoming aware of their psychological skill, and pedagogical suggestions are offered for changing and improving aspects of psychological skill in students
    corecore