15,487 research outputs found

    An evaluation of the NASA Tech House, including live-in test results, volume 1

    Get PDF
    The NASA Tech House was designed and constructed at the NASA Langley Research Center, Hampton, Virginia, to demonstrate and evaluate new technology potentially applicable for conservation of energy and resources and for improvements in safety and security in a single-family residence. All technology items, including solar-energy systems and a waste-water-reuse system, were evaluated under actual living conditions for a 1 year period with a family of four living in the house in their normal lifestyle. Results are presented which show overall savings in energy and resources compared with requirements for a defined similar conventional house under the same conditions. General operational experience and performance data are also included for all the various items and systems of technology incorporated into the house design

    Trident pair production in strong laser pulses

    Full text link
    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse duration, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.Comment: 4 pages, 1 .eps figure. Version 2: reference added, published versio

    The Prediction of Mass of Z'-Boson from bq0−bq0barb_q^0-b_q^0 bar Mixing

    Full text link
    B_q^0-B_^0 bar mixing offers a profound probe into the effects of new physics beyond the Standard Model. In this paper, Bs0−Bs0barB_s^0-B_s^0 bar and Bd0−Bd0barB_d^0-B_d^0 bar mass differences are considered taking the effect of both Z-and Z' -mediated flavour-changing neutral currents in the Bq0−Bq0barB_q^0-B_q^0 bar mixing (q = d, s). Our estimated mass of Z' boson is accessible at the experiments LHC and B-factories in near future.Comment: 11 pages, 02 Figure

    Sequential Desynchronization in Networks of Spiking Neurons with Partial Reset

    Full text link
    The response of a neuron to synaptic input strongly depends on whether or not it has just emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to residual input charges and study its collective network dynamics analytically. We uncover a novel desynchronization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an increase in the strength of the partial response induces a sequence of bifurcations from states with large clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous spiking. We briefly discuss key consequences of this mechanism for more general networks of biophysical neurons

    Quantum advantage by relational queries about physically realizable equivalence classes

    Full text link
    Relational quantum queries are sometimes capable to effectively decide between collections of mutually exclusive elementary cases without completely resolving and determining those individual instances. Thereby the set of mutually exclusive elementary cases is effectively partitioned into equivalence classes pertinent to the respective query. In the second part of the paper, we review recent progress in theoretical certifications (relative to the assumptions made) of quantum value indeterminacy as a means to build quantum oracles for randomness.Comment: 8 Pages, one figure, invited contribution to TopHPC2019, Tehran, Iran, April 22-25, 201

    Contexts of diffusion: Adoption of research synthesis in Social Work and Women's Studies

    Full text link
    Texts reveal the subjects of interest in research fields, and the values, beliefs, and practices of researchers. In this study, texts are examined through bibliometric mapping and topic modeling to provide a birds eye view of the social dynamics associated with the diffusion of research synthesis methods in the contexts of Social Work and Women's Studies. Research synthesis texts are especially revealing because the methods, which include meta-analysis and systematic review, are reliant on the availability of past research and data, sometimes idealized as objective, egalitarian approaches to research evaluation, fundamentally tied to past research practices, and performed with the goal informing future research and practice. This study highlights the co-influence of past and subsequent research within research fields; illustrates dynamics of the diffusion process; and provides insight into the cultural contexts of research in Social Work and Women's Studies. This study suggests the potential to further develop bibliometric mapping and topic modeling techniques to inform research problem selection and resource allocation.Comment: To appear in proceedings of the 2014 International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP2014

    Searching for gravitational waves from the Crab pulsar - the problem of timing noise

    Get PDF
    Of the current known pulsars, the Crab pulsar (B0531+21) is one of the most promising sources of gravitational waves. The relatively large timing noise of the Crab causes its phase evolution to depart from a simple spin-down model. This effect needs to be taken in to account when performing time domain searches for the Crab pulsar in order to avoid severely degrading the search efficiency. The Jodrell Bank Crab pulsar ephemeris is examined to see if it can be used for tracking the phase evolution of any gravitational wave signal from the pulsar, and we present a method of heterodyning the data that takes account of the phase wander. The possibility of obtaining physical information about the pulsar from comparisons of the electromagnetically and a gravitationally observed timing noise is discussed. Finally, additional problems caused by pulsar glitches are discussed.Comment: 5 pages, 1 figure, Proceedings of the 5th Amaldi Conference on Gravitational Waves, Pisa, Italy, 6-11 July 200

    Determination and Prediction of Some Soil Properties Using Partial Least Square (PLS) Calibration and Mid-Infra Red (MIR) Spectroscopy Analysis

    Full text link
    Soil chemical, physical and biological analyses are a crucial but often expensive and time-consuming step in the characterization of soils. Rapid and accurate predictions and relatively simple methods are ideally needed for soil analysis. The objective of this study was to predict some soil properties (e.g. pH, EC, total C, total N,C/N, NH4-N, NO3-N, P, K, clay, silt, and sand and soil microbial biomass carbon) across the Wickepin farm during summer season using a Mid-Infra Red - Partial Least Square (MIR–PLS) method. The 291 soil samples were analyzed bothwith soil extraction procedure and MIR Spectrometer. Calibrations were developed between MIR spectral data and the results of soil extraction procedures. Results using the PLS-MIR showed that MIR-predicted values were almost as highly correlated to the measured value obtained by the soil extraction method of total carbon, total nitrogen and soil pH. Values for EC, NH4-N, NO3-N, C/N, P, K, clay, silt, sand, and soil microbial biomass carbon were not successfully predicted by the MIR – PLS technique. There was a tendency for these factors to correlate with the MIR predicted value, but the correlation values were very low. This study has confirmed that the MIR-PLS method can be used to predict some soil properties based on calibrations of MIR values

    Breaking stress of neutron star crust

    Full text link
    The breaking stress (the maximum of the stress-strain curve) of neutron star crust is important for neutron star physics including pulsar glitches, emission of gravitational waves from static mountains, and flares from star quakes. We perform many molecular dynamic simulations of the breaking stress at different coupling parameters (inverse temperatures) and strain rates. We describe our results with the Zhurkov model of strength. We apply this model to estimate the breaking stress for timescales ~1 s - 1 year, which are most important for applications, but much longer than can be directly simulated. At these timescales the breaking stress depends strongly on the temperature. For coupling parameter <200, matter breaks at very small stress, if it is applied for a few years. This viscoelastic creep can limit the lifetime of mountains on neutron stars. We also suggest an alternative model of timescale-independent breaking stress, which can be used to estimate an upper limit on the breaking stress.Comment: 5 pages, 2 figures. Accepted for publication in MNRAS Letter

    Dissipation in equations of motion of scalar fields

    Get PDF
    The methods of non-equilibrium quantum field theory are used to investigate the possibility of representing dissipation in the equation of motion for the expectation value of a scalar field by a friction term, such as is commonly included in phenomenological inflaton equations of motion. A sequence of approximations is exhibited which reduces the non-equilibrium theory to a set of local evolution equations. However, the adiabatic solution to these evolution equations which is needed to obtain a local equation of motion for the expectation value is not well defined; nor, therefore, is the friction coefficient. Thus, a non-equilibrium treatment is essential, even for a system that remains close to thermal equilibrium, and the formalism developed here provides one means of achieving this numerically.Comment: 17 pages, 5 figure
    • …
    corecore