15,487 research outputs found
An evaluation of the NASA Tech House, including live-in test results, volume 1
The NASA Tech House was designed and constructed at the NASA Langley Research Center, Hampton, Virginia, to demonstrate and evaluate new technology potentially applicable for conservation of energy and resources and for improvements in safety and security in a single-family residence. All technology items, including solar-energy systems and a waste-water-reuse system, were evaluated under actual living conditions for a 1 year period with a family of four living in the house in their normal lifestyle. Results are presented which show overall savings in energy and resources compared with requirements for a defined similar conventional house under the same conditions. General operational experience and performance data are also included for all the various items and systems of technology incorporated into the house design
Trident pair production in strong laser pulses
We calculate the trident pair production amplitude in a strong laser
background. We allow for finite pulse duration, while still treating the laser
fields nonperturbatively in strong-field QED. Our approach reveals explicitly
the individual contributions of the one-step and two-step processes. We also
expose the role gauge invariance plays in the amplitudes and discuss the
relation between our results and the optical theorem.Comment: 4 pages, 1 .eps figure. Version 2: reference added, published versio
The Prediction of Mass of Z'-Boson from Mixing
B_q^0-B_^0 bar mixing offers a profound probe into the effects of new
physics beyond the Standard Model. In this paper, and
mass differences are considered taking the effect of both
Z-and Z' -mediated flavour-changing neutral currents in the
mixing (q = d, s). Our estimated mass of Z' boson is accessible at the
experiments LHC and B-factories in near future.Comment: 11 pages, 02 Figure
Sequential Desynchronization in Networks of Spiking Neurons with Partial Reset
The response of a neuron to synaptic input strongly depends on whether or not
it has just emitted a spike. We propose a neuron model that after spike
emission exhibits a partial response to residual input charges and study its
collective network dynamics analytically. We uncover a novel desynchronization
mechanism that causes a sequential desynchronization transition: In globally
coupled neurons an increase in the strength of the partial response induces a
sequence of bifurcations from states with large clusters of synchronously
firing neurons, through states with smaller clusters to completely asynchronous
spiking. We briefly discuss key consequences of this mechanism for more general
networks of biophysical neurons
Quantum advantage by relational queries about physically realizable equivalence classes
Relational quantum queries are sometimes capable to effectively decide
between collections of mutually exclusive elementary cases without completely
resolving and determining those individual instances. Thereby the set of
mutually exclusive elementary cases is effectively partitioned into equivalence
classes pertinent to the respective query. In the second part of the paper, we
review recent progress in theoretical certifications (relative to the
assumptions made) of quantum value indeterminacy as a means to build quantum
oracles for randomness.Comment: 8 Pages, one figure, invited contribution to TopHPC2019, Tehran,
Iran, April 22-25, 201
Contexts of diffusion: Adoption of research synthesis in Social Work and Women's Studies
Texts reveal the subjects of interest in research fields, and the values,
beliefs, and practices of researchers. In this study, texts are examined
through bibliometric mapping and topic modeling to provide a birds eye view of
the social dynamics associated with the diffusion of research synthesis methods
in the contexts of Social Work and Women's Studies. Research synthesis texts
are especially revealing because the methods, which include meta-analysis and
systematic review, are reliant on the availability of past research and data,
sometimes idealized as objective, egalitarian approaches to research
evaluation, fundamentally tied to past research practices, and performed with
the goal informing future research and practice. This study highlights the
co-influence of past and subsequent research within research fields;
illustrates dynamics of the diffusion process; and provides insight into the
cultural contexts of research in Social Work and Women's Studies. This study
suggests the potential to further develop bibliometric mapping and topic
modeling techniques to inform research problem selection and resource
allocation.Comment: To appear in proceedings of the 2014 International Conference on
Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP2014
Searching for gravitational waves from the Crab pulsar - the problem of timing noise
Of the current known pulsars, the Crab pulsar (B0531+21) is one of the most
promising sources of gravitational waves. The relatively large timing noise of
the Crab causes its phase evolution to depart from a simple spin-down model.
This effect needs to be taken in to account when performing time domain
searches for the Crab pulsar in order to avoid severely degrading the search
efficiency. The Jodrell Bank Crab pulsar ephemeris is examined to see if it can
be used for tracking the phase evolution of any gravitational wave signal from
the pulsar, and we present a method of heterodyning the data that takes account
of the phase wander. The possibility of obtaining physical information about
the pulsar from comparisons of the electromagnetically and a gravitationally
observed timing noise is discussed. Finally, additional problems caused by
pulsar glitches are discussed.Comment: 5 pages, 1 figure, Proceedings of the 5th Amaldi Conference on
Gravitational Waves, Pisa, Italy, 6-11 July 200
Determination and Prediction of Some Soil Properties Using Partial Least Square (PLS) Calibration and Mid-Infra Red (MIR) Spectroscopy Analysis
Soil chemical, physical and biological analyses are a crucial but often expensive and time-consuming step in the characterization of soils. Rapid and accurate predictions and relatively simple methods are ideally needed for soil analysis. The objective of this study was to predict some soil properties (e.g. pH, EC, total C, total N,C/N, NH4-N, NO3-N, P, K, clay, silt, and sand and soil microbial biomass carbon) across the Wickepin farm during summer season using a Mid-Infra Red - Partial Least Square (MIR–PLS) method. The 291 soil samples were analyzed bothwith soil extraction procedure and MIR Spectrometer. Calibrations were developed between MIR spectral data and the results of soil extraction procedures. Results using the PLS-MIR showed that MIR-predicted values were almost as highly correlated to the measured value obtained by the soil extraction method of total carbon, total nitrogen and soil pH. Values for EC, NH4-N, NO3-N, C/N, P, K, clay, silt, sand, and soil microbial biomass carbon were not successfully predicted by the MIR – PLS technique. There was a tendency for these factors to correlate with the MIR predicted value, but the correlation values were very low. This study has confirmed that the MIR-PLS method can be used to predict some soil properties based on calibrations of MIR values
Breaking stress of neutron star crust
The breaking stress (the maximum of the stress-strain curve) of neutron star
crust is important for neutron star physics including pulsar glitches, emission
of gravitational waves from static mountains, and flares from star quakes. We
perform many molecular dynamic simulations of the breaking stress at different
coupling parameters (inverse temperatures) and strain rates. We describe our
results with the Zhurkov model of strength. We apply this model to estimate the
breaking stress for timescales ~1 s - 1 year, which are most important for
applications, but much longer than can be directly simulated. At these
timescales the breaking stress depends strongly on the temperature. For
coupling parameter <200, matter breaks at very small stress, if it is applied
for a few years. This viscoelastic creep can limit the lifetime of mountains on
neutron stars. We also suggest an alternative model of timescale-independent
breaking stress, which can be used to estimate an upper limit on the breaking
stress.Comment: 5 pages, 2 figures. Accepted for publication in MNRAS Letter
Dissipation in equations of motion of scalar fields
The methods of non-equilibrium quantum field theory are used to investigate
the possibility of representing dissipation in the equation of motion for the
expectation value of a scalar field by a friction term, such as is commonly
included in phenomenological inflaton equations of motion. A sequence of
approximations is exhibited which reduces the non-equilibrium theory to a set
of local evolution equations. However, the adiabatic solution to these
evolution equations which is needed to obtain a local equation of motion for
the expectation value is not well defined; nor, therefore, is the friction
coefficient. Thus, a non-equilibrium treatment is essential, even for a system
that remains close to thermal equilibrium, and the formalism developed here
provides one means of achieving this numerically.Comment: 17 pages, 5 figure
- …