231 research outputs found
production in Z Decays
We have searched for evidence of Upsilon production in 3.5 million hadronic Z decays collected by the L3 detector at LEP in 1991-1995. No signals are observed for the decay chain Z -> Upsilon X; Upsilon -> l+l- (l= e, mu), therefore upper limits at the 95% confidence level are set on the following Z branching fractions: BR (Z -> Upsilon(1S) X) Upsilon(2S) X) Upsilon(3S) X) < 9.4 x 10**-5
Study of the Weak Charged Hadronic Current in b Decays
Charged and neutral particle multiplicities of jets associated with identified semileptonic and hadronic b decays are studied. The observed differences between these jets are used to determine the inclusive properties of the weak charged hadronic current. The average charged particle multiplicity of the weak charged hadronic current in b decays is measured for the first time to be 2.690.07(stat.)0.14(syst.). This result is in good agreement with the JETSET hadronization model of the weak charged hadronic current if 4017\% of the produced mesons are light--flavored tensor (L=1) mesons. This level of tensor meson production is consistent with the measurement of the multiplicity in the weak charged hadronic current in b decays. \end{abstract
Search for neutral charmless B decays at LEP
A search for rare charmless decays of \Bd and \Bs mesons has been performed in the exclusive channels \Bd_{(\mathrm s)}\ra\eta\eta, \Bd_{(\mathrm s)}\ra\eta\pio and \Bd_{(\mathrm s)}\ra\pio\pio. The data sample consisted of three million hadronic \Zo decays collected by the L3 experiment at LEP from 1991 through 1994. No candidate event has been observed and the following upper limits at 90\% confidence level on the branching ratios have been set \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\eta)<4.1\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\eta)<1.5\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\eta\pio)<2.5\times 10^{-4},\,\, \mathrm{Br}(\Bs\ra\eta\pio)<1.0\times 10^{-3},\,\, \end{displaymath} \begin{displaymath} \mathrm{Br}(\Bd\ra\pio\pio)<6.0\times 10^{-5},\,\, \mathrm{Br}(\Bs\ra\pio\pio)<2.1\times 10^{-4}. \end{displaymath} These are the first experimental limits on \Bd\ra\eta\eta and on the \Bs neutral charmless modes
Search for neutral B meson decays to two charged leptons
The decays are searched for in 3.5 million hadronic events, which constitute the full LEP I data sample collected by the L3 detector. No signals are observed, therefore upper limits at the 90\%(95\%) confidence levels are set on the following branching fractions: % \begin{center}% {\setlength{\tabcolsep}{2pt} \begin{tabular}{lccccclcccc}% % Br & & & & ; & \hspace*{5mm} & Br & & & & ; \\% Br & & & & ; & \hspace*{5mm} & Br & & & & ; \\% Br & & & & ; & \hspace*{5mm} & Br & & & & . \\% % \end{tabular}% } \end{center}% % The results for and are the first limits set on these decay modes
Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks
The workshop titled “Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks” was co-organized by the Evidence-based Toxicology Collaboration and the European Food Safety Authority (EFSA) and hosted by EFSA at its headquarters in Parma, Italy on October 2 and 3, 2019. The goal was to explore integration of systematic review with mechanistic evidence evaluation. Participants were invited to work on concrete products to advance the exploration of how evidence-based approaches can support the development and application of adverse outcome pathways (AOP) in chemical risk assessment. The workshop discussions were centered around three related themes: 1) assessing certainty in AOPs, 2) literature-based AOP development, and 3) integrating certainty in AOPs and non-animal evidence into decision frameworks. Several challenges, mostly related to methodology, were identified and largely determined the workshop recommendations. The workshop recommendations included the comparison and potential alignment of processes used to develop AOP and systematic review methodology, including the translation of vocabulary of evidence-based methods to AOP and vice versa, the development and improvement of evidence mapping and text mining methods and tools, as well as a call for a fundamental change in chemical risk and uncertainty assessment methodology if to be conducted based on AOPs and new approach methodologies (NAM). The usefulness of evidence-based approaches for mechanism-based chemical risk assessments was stressed, particularly the potential contribution of the rigor and transparency inherent to such approaches in building stakeholders’ trust for implementation of NAM evidence and AOPs into chemical risk assessment
Pinning down electron correlations in RaF via spectroscopy of excited states
We report the spectroscopy of 11 electronic states in the radioactive
molecule radium monofluoride (RaF). The observed excitation energies are
compared with state-of-the-art relativistic Fock-space coupled cluster (FS-RCC)
calculations, which achieve an agreement of >99.71% (within ~8 meV) for all
states. High-order electron correlation and quantum electrodynamics corrections
are found to be important at all energies. Establishing the accuracy of
calculations is an important step towards high-precision studies of these
molecules, which are proposed for sensitive searches of physics beyond the
Standard Model.Comment: Submitted for publicatio
Influences on the pharmacokinetics of oxycodone: a multicentre cross-sectional study in 439 adult cancer patients
- …
