3,719 research outputs found

    Simple Ginzburg-Landau Theory for Vortices in a Crystal Lattice

    Full text link
    We study the Ginzburg-Landau model with a nonlocal quartic term as a simple phenomenological model for superconductors in the presence of coupling between the vortex lattice and the underlying crystal lattice. In mean-field theory, our model is consistent with a general oblique vortex lattice ranging from a triangular lattice to a square lattice. This simple formulation enables us to study the effect of thermal fluctuations in the vortex liquid regime. We calculate the structure factor of the vortex liquid nonperturbatively and find Bragg-like peaks with four-fold symmetry appearing in the structure factor even though there is only a short-range crystalline order.Comment: Revised version with new title and additional results for the vortex liquid regime, to be published in Phys. Rev. Lett. 5 pages RevTeX, 1 figure include

    The nature of solar brightness variations

    Full text link
    The solar brightness varies on timescales from minutes to decades. Determining the sources of such variations, often referred to as solar noise, is of importance for multiple reasons: a) it is the background that limits the detection of solar oscillations, b) variability in solar brightness is one of the drivers of the Earth's climate system, c) it is a prototype of stellar variability which is an important limiting factor for the detection of extra-solar planets. Here we show that recent progress in simulations and observations of the Sun makes it finally possible to pinpoint the source of the solar noise. We utilise high-cadence observations from the Solar Dynamic Observatory and the SATIRE model to calculate the magnetically-driven variations of solar brightness. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface are computed with the MURAM code. We find that surface magnetic field and granulation can together precisely explain solar noise on timescales from minutes to decades, i.e. ranging over more than six orders of magnitude in the period. This accounts for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by CoRoT and Kepler uncovered brightness variations similar to that of the Sun but with much wider variety of patterns. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated TESS and PLATO data.Comment: This is the submitted version of the paper published in Nature Astronom

    Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity

    Get PDF
    We demonstrate a single-photon collection efficiency of (44.3±2.1)%(44.3\pm2.1)\% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0)=(4±5)%g^{(2)}(0)=(4\pm5)\% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962±46962\pm46 kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77±0.190.77\pm0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte

    Air-Loads Prediction of a UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    Get PDF
    The presented research extends the capability of a loose coupling computational fluid dynamics (CFD) and computational structure dynamics (CSD) code to calculate the flow-field around a rotor and test stand mounted inside a wind tunnel. Comparison of predicted air-load results for a full-scale UH-60A rotor recently tested inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at Ames Research Center and in free-air flight are made for three challenging flight data points from the earlier conducted UH-60A Air-loads Program. Overall results show that the extension of the coupled CFD/CSD code to the wind-tunnel environment is generally successful

    Non-commutative field theory approach to two-dimensional vortex liquid system

    Full text link
    We investigate the non-commutative (NC) field theory approach to the vortex liquid system restricted to the lowest Landau level (LLL) approximation. NC field theory effectively takes care of the phase space reduction of the LLL physics in a ⋆\star-product form and introduces a new gauge invariant form of a quartic potential of the order parameter in the Ginzburg-Landau (GL) free energy. This new quartic interaction coupling term has a non-trivial equivalence relation with that obtained by Br\'ezin, Nelson and Thiaville in the usual GL framework. The consequence of the equivalence is discussed.Comment: Add vortex lattice formation, more references, and one autho

    Parquet Graph Resummation Method for Vortex Liquids

    Full text link
    We present in detail a nonperturbative method for vortex liquid systems. This method is based on the resummation of an infinite subset of Feynman diagrams, the so-called parquet graphs, contributing to the four-point vertex function of the Ginzburg-Landau model for a superconductor in a magnetic field. We derive a set of coupled integral equations, the parquet equations, governing the structure factor of the two-dimensional vortex liquid system with and without random impurities and the three-dimensional system in the absence of disorder. For the pure two-dimensional system, we simplify the parquet equations considerably and obtain one simple equation for the structure factor. In two dimensions, we solve the parquet equations numerically and find growing translational order characterized by a length scale RcR_c as the temperature is lowered. The temperature dependence of RcR_c is obtained in both pure and weakly disordered cases. The effect of disorder appears as a smooth decrease of RcR_c as the strength of disorder increases.Comment: 15 pages, 12 PostScript figures, uses multicols.sty and epsf.st

    Liquid-to-liquid phase transition in pancake vortex systems

    Full text link
    We study the thermodynamics of a model of pancake vortices in layered superconductors. The model is based on the effective pair potential for the pancake vortices derived from the London approximation of a version of the Lawrence-Doniach model which is valid for extreme type-II superconductors. Using the hypernetted-chain (HNC) approximation, we find that there is a temperature below which multiple solutions to the HNC equations exist. By explicitly evaluating the free energy for each solution we find that the system undergoes a first-order transition between two vortex liquid phases. The low-temperature phase has larger correlations along the field direction than the high-temperature phase. We discuss the possible relation of this phase transition to the liquid-to-liquid phase transition recently observed in Y-Ba-Cu-O superconductors in high magnetic fields in the presence of disorder.Comment: 7 pages, 6 figure

    What is the best way of delivering virtual nature for improving mood?: An experimental comparison of high definition TV, 360Âș video, and computer generated virtual reality

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record. Exposure to ‘real’ nature can increase positive affect and decrease negative affect, but direct access is not always possible, e.g. for people in health/care settings who often experience chronic boredom. In these settings ‘virtual’ forms of nature may also have mood-related benefits (e.g. reducing boredom) but it has been difficult to separate effects of nature content from those of delivery mode. The present laboratory-based study explored whether exposure to three different delivery modes of virtual nature could reduce negative affect (including boredom) and/or increase positive affect. Adult volunteer participants (n = 96) took part in a boredom induction task (to simulate the emotional state of many people in health/care settings) before being randomly assigned to view/ interact with a virtual underwater coral reef in one of three experimental conditions: (a) 2D video viewed on a high-definition TV screen; (b) 3600 video VR (360-VR) viewed via a head mounted display (HMD); or (c) interactive computer-generated VR (CG-VR), also viewed via a HMD and interacted with using a hand-held controller. Visual and auditory content was closely matched across conditions with help from the BBC’s Blue Planet II series team. Supporting predictions, virtual exposure to a coral reef reduced boredom and negative affect and increased positive affect and nature connectedness. Although reductions in boredom and negative affect were similar across all three conditions, CG-VR was associated with significantly greater improvements in positive affect than TV, which were mediated by greater experienced presence and increases in nature connectedness. Results improve our understanding of the importance of virtual nature delivery mode and will inform studies in real care settings.EU Horizon 202

    The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis

    Get PDF
    Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, “hyper-pluripotent” state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency
    • 

    corecore