777 research outputs found

    Off hour admission to an intensivist-led ICU is not associated with increased mortality

    Get PDF
    Introduction: Caring for the critically ill is a 24-hour-a-day responsibility, but not all resources and staff are available during off hours. We evaluated whether intensive care unit (ICU) admission during off hours affects hospital mortality. Methods: This retrospective multicentre cohort study was carried out in three non-academic teaching hospitals in the Netherlands. All consecutive patients admitted to the three ICUs between 2004 and 2007 were included in the study, except for patients who did not fulfil APACHE II criteria (readmissions, burns, cardiac surgery, younger than 16 years, length of stay less than 8 hours). Data were collected prospectively in the ICU databases. Hospital mortality was the primary endpoint of the study. Off hours was defined as the interval between 10 pm and 8 am during weekdays and between 6 pm and 9 am during weekends. Intensivists, with no responsibilities outside the ICU, were present in the ICU during daytime and available for either consultation or assistance on site during off hours. Residents were available 24 hours a day 7 days a week in two and fellows in one of the ICUs. Results: A total of 6725 patients were included in the study, 4553 (67.7%) admitted during daytime and 2172 (32.3%) admitted during off hours. Baseline characteristics of patients admitted during daytime were significantly different from those of patients admitted during off hours. Hospital mortality was 767 (16.8%) in patients admitted during daytime and 469 (21.6%) in patients admitted during off hours (P < 0.001, unadjusted odds ratio 1.36, 95%CI 1.20-1.55). Standardized mortality ratios were similar for patients admitted during off hours and patients admitted during daytime. In a logistic regression model APACHE II expected mortality, age and admission type were all significant confounders but off-hours admission was not significantly associated with a higher mortality (P = 0.121, adjusted odds ratio 1.125, 95%CI 0.969-1.306). Conclusions: The increased mortality after ICU admission during off hours is explained by a higher illness severity in patients admitted during off hours

    Space-time evolution of electron cascades in diamond

    Full text link
    Here we describe model calculations to follow the spatio-temporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte-Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E 250 eV. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud. This means that the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E 250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. As the system cools, energy is distributed more equally, and the spatial distribution of the electron cloud becomes isotropic. At 90 fs maximal radius is about 150 A. The Monte-Carlo model described here could be adopted for the investigation of radiation damage in other insulators and has implications for planned experiments with intense femtosecond X-ray sources.Comment: 26 pages, latex, 13 figure

    Infective endocarditis in the Netherlands:current epidemiological profile and mortality An analysis based on partial ESC EORP collected data

    Get PDF
    Introduction: Infective endocarditis (IE) is associated with a high in-hospital and long term mortality. Although progress has been made in diagnostic approach and management of IE, morbidity and mortality of IE remain high. In the latest European guidelines, the importance of the multi-modality imaging in diagnosis and follow up of IE is emphasized. Aim: The aim was to provide information regarding mortality and adverse events of IE, to determine IE characteristics and to assess current use of imaging in the diagnostic workup of IE. Methods: This is a prospective observational cohort study. We used data from the EURO-ENDO registry. Seven hospitals in the Netherlands have participated and included patients with IE between April 2016 and April 2018. Results: A total of 139 IE patients were included. Prosthetic valve endocarditis constituted 32.4% of the cases, cardiac device related IE 7.2% and aortic root prosthesis IE 3.6%. In-hospital mortality was 14.4% (20 patients) and one-year mortality was 21.6% (30 patients). The incidence of embolic events under treatment was 16.5%, while congestive heart failure or cardiogenic shock occurred in 15.1% of the patients. Transthoracic and transoesophageal echocardiography were performed most frequently (97.8%; 81.3%) and within 3 days after IE suspicion, followed by 18F‑fluorodeoxyglucose positron emission tomography/computed tomography (45.3%) within 6 days and multi-slice computed tomography (42.4%) within 7 days. Conclusion: We observed a high percentage of prosthetic valve endocarditis, rapid and extensive use of imaging and a relatively low in-hospital and one-year mortality of IE in the Netherlands. Limitations include possible selection bias

    Virus Capsid Dissolution Studied by Microsecond Molecular Dynamics Simulations

    Get PDF
    Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis

    Added value of 18F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis

    Get PDF
    Backgrounds: Transcatheter-implanted aortic valve infective endocarditis (TAVI-IE) is difficult to diagnose when relying on the Duke Criteria. Our aim was to assess the additional diagnostic value of 18F-fluorodeoxyglucose (18F-FDG) positron emission/computed tomography (PET/CT) and cardiac computed tomography angiography (CTA) in suspected TAVI-IE. Methods: A multicenter retrospective analysis was performed in all patients who underwent 18F-FDG-PET/CT and/or CTA with suspected TAVI-IE. Patients were first classified with Duke Criteria and after adding 18F-FDG-PET/CT and CTA, they were classified with European Society of Cardiology (ESC) criteria. The final diagnosis was determined by our Endocarditis Team based on ESC guideline recommendations. Results: Thirty patients with suspected TAVI-IE were included. 18F-FDG-PET/CT was performed in all patients and Cardiac CTA in 14/30. Using the Modified Duke Criteria, patients were classified as 3% rejected (1/30), 73% possible (22/30), and 23% definite (7/30) TAVI-IE. Adding 18F-FDG-PET/CT and CTA supported the reclassification of 10 of the 22 possible cases as “definite TAVI-IE” (5/22) or “rejected TAVI-IE” (5/22). This changed the final diagnosis to 20% rejected (6/30), 40% possible (12/30), and 40% definite (12/30) TAVI-IE. Conclusions: Addition of 18F-FDG-PET/CT and/or CTA changed the final diagnosis in 33% of patients and proved to be a valuable diagnostic tool in patients with suspected TAVI-IE

    Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain

    Get PDF
    ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo

    Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    Get PDF
    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
    corecore