408 research outputs found

    Local Inhomogeneity Effects on Nucleation Process in a High External Bias

    Full text link
    Quantum nucleation processes in the presence of local moderate inhomogeneities are studied theoretically at high biases. The quantum nucleation rate Gamma is calculated for one-dimensional systems in a form Gamma = A e^(-B/hbar) by using the `bounce' method. The bias-dependence of the exponent B is shown to be changed by inhomogeneities. This change is explained by the reduction of the effective spatial dimension of the system. By studying the system-size dependence of the prefactor A, the condition for the appearance of inhomogeneity effects is evaluated. Nucleation rates in thermal activation regimes are also calculated, and compared with quantum tunneling regimes. For higher-dimensional systems, it is shown that the local approximation of inhomogeneity does not hold, and that spatial profiles of inhomogeneity become important.Comment: 10 pages, 6 figure

    Characterization of Bacillus strains of marine origin

    Get PDF
    A total of twenty aerobic endospore-forming bacilli, isolated from marine invertebrates and sea water of different areas of the Pacific Ocean, were taxonomically characterized. Most of the bacilli (11 strains) of marine origin belonged to the species Bacillus subtilis, according to their phenotypic characteristics, antibiotic susceptibility profiles, and fatty acids patterns. A group of four alkaliphilic strains formed a separate cluster that was tentatively classified as B. horti. One isolate, KMM 1717, associated with a sponge from the Coral Sea was identified as B. pumilus. Two strains, Bacillus KMM 1916 and KMM 1918, showed antibiotic sensitivity profiles similar to B. licheniformis, but they had a distinct fatty acid composition and peculiar phenotypic traits. The taxonomic affiliation of KMM 1810 and KMM 1763 remained unclear since their fatty acid composition and antibiotic sensitivity patterns were not resembled with none of these obtained for Bacillus strains

    Topological Analysis of MAPK Cascade for Kinetic ErbB Signaling

    Get PDF
    Ligand-induced homo- and hetero-dimer formation of ErbB receptors results in different biological outcomes irrespective of recruitment and activation of similar effector proteins. Earlier experimental research indicated that cells expressing both EGFR (epidermal growth factor receptor) and the ErbB4 receptor (E1/4 cells) induced E1/4 cell-specific B-Raf activation and higher extracellular signal-regulated kinase (ERK) activation, followed by cellular transformation, than cells solely expressing EGFR (E1 cells) in Chinese hamster ovary (CHO) cells. Since our experimental data revealed the presence of positive feedback by ERK on upstream pathways, it was estimated that the cross-talk/feedback pathway structure of the Raf-MEK-ERK cascade might affect ERK activation dynamics in our cell system. To uncover the regulatory mechanism concerning the ERK dynamics, we used topological models and performed parameter estimation for all candidate structures that possessed ERK-mediated positive feedback regulation of Raf. The structure that reliably reproduced a series of experimental data regarding signal amplitude and duration of the signaling molecules was selected as a solution. We found that the pathway structure is characterized by ERK-mediated positive feedback regulation of B-Raf and B-Raf-mediated negative regulation of Raf-1. Steady-state analysis of the estimated structure indicated that the amplitude of Ras activity might critically affect ERK activity through ERK-B-Raf positive feedback coordination with sustained B-Raf activation in E1/4 cells. However, Rap1 that positively regulates B-Raf activity might be less effective concerning ERK and B-Raf activity. Furthermore, we investigated how such Ras activity in E1/4 cells can be regulated by EGFR/ErbB4 heterodimer-mediated signaling. From a sensitivity analysis of the detailed upstream model for Ras activation, we concluded that Ras activation dynamics is dominated by heterodimer-mediated signaling coordination with a large initial speed of dimerization when the concentration of the ErbB4 receptor is considerably high. Such characteristics of the signaling cause the preferential binding of the Grb2-SOS complex to heterodimer-mediated signaling molecules

    A Novel SALL4/OCT4 Transcriptional Feedback Network for Pluripotency of Embryonic Stem Cells

    Get PDF
    Background: SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell) pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members. Methodology/Principal Findings: This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the “break” for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4. Conclusions/Significance: Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the “stemness” of ES cells

    Optimizing and evaluating protein microcrystallography experiments: strengths and weaknesses of X-rays and electrons

    Get PDF
    Recently, significant technological innovations have enabled the measurement of both X-ray and electron diffraction from protein microcrystals. These new microcrystallography experiments are useful when large crystals cannot be obtained, but also in other cases, such as when large crystals suffer from long-range disorder, or when uniform perturbations need to be applied rapidly to the entire crystal volume. Optimizing the preparation of protein microcrystals for this new class of experiments presents new challenges for crystallographers, who have traditionally sought to grow large, single crystals. To better understand these new challenges, we optimized the production of microcrystalline samples of cyclophilin A (CypA), starting from conditions that produced millimeter scale crystals. Next, we used these microcrystals to determine CypA structures by serial femtosecond crystallography (SFX) at two XFEL lightsources, and by microcrystal electron diffraction (microED) in an electron cryomicroscope. Here, I will present our optimization strategy for protein microcrystallization, and compare the results of X-ray and electron microcrystallography experiments with CypA. I will focus on the unique caveats of sample delivery for each method, and compare the resulting structures. The goal will be to provide insight into which microcrystallography experiment is most appropriate for which types of samples, and to share our experience with sample preparation and delivery for each type of experiment
    corecore