303 research outputs found

    Structure-Based Identification and Functional Characterization of a Lipocalin in the Malaria Parasite Plasmodium falciparum

    Get PDF
    Highlights: • Crystal structure of the malaria parasite lipocalin • Comparative analysis of lipocalin superfamily members in alveolate genomes • Localization of PfLipocalin to the parasitophorous vacuole and food vacuole • Reverse genetics reveal PfLipocalin function in oxidative damage control Summary: Proteins of the lipocalin family are known to bind small hydrophobic ligands and are involved in various physiological processes ranging from lipid transport to oxidative stress responses. The genome of the malaria parasite Plasmodium falciparum contains a single protein PF3D7_0925900 with a lipocalin signature. Using crystallography and small-angle X-ray scattering, we show that the protein has a tetrameric structure of typical lipocalin monomers; hence we name it P. falciparum lipocalin (PfLCN). We show that PfLCN is expressed in the intraerythrocytic stages of the parasite and localizes to the parasitophorous and food vacuoles. Conditional knockdown of PfLCN impairs parasite development, which can be rescued by treatment with the radical scavenger Trolox or by temporal inhibition of hemoglobin digestion. This suggests a key function of PfLCN in counteracting oxidative stress-induced cell damage during multiplication of parasites within erythrocytes

    Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease

    Get PDF
    Background:Extensive prostate specific antigen screening for prostate cancer generates a high number of unnecessary biopsies and over-treatment due to insufficient differentiation between indolent and aggressive tumours. We hypothesized that seminal plasma is a robust source of novel prostate cancer (PCa) biomarkers with the potential to improve primary diagnosis of and to distinguish advanced from indolent disease. <br>Methodology/Principal Findings: In an open-label case/control study 125 patients (70 PCa, 21 benign prostate hyperplasia, 25 chronic prostatitis, 9 healthy controls) were enrolled in 3 centres. Biomarker panels a) for PCa diagnosis (comparison of PCa patients versus benign controls) and b) for advanced disease (comparison of patients with post surgery Gleason score <7 versus Gleason score >>7) were sought. Independent cohorts were used for proteomic biomarker discovery and testing the performance of the identified biomarker profiles. Seminal plasma was profiled using capillary electrophoresis mass spectrometry. Pre-analytical stability and analytical precision of the proteome analysis were determined. Support vector machine learning was used for classification. Stepwise application of two biomarker signatures with 21 and 5 biomarkers provided 83% sensitivity and 67% specificity for PCa detection in a test set of samples. A panel of 11 biomarkers for advanced disease discriminated between patients with Gleason score 7 and organ-confined (<pT3a) or advanced (≥pT3a) disease with 80% sensitivity and 82% specificity in a preliminary validation setting. Seminal profiles showed excellent pre-analytical stability. Eight biomarkers were identified as fragments of N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase​,prostatic acid phosphatase, stabilin-2, GTPase IMAP family member 6, semenogelin-1 and -2. Restricted sample size was the major limitation of the study.</br> <br>Conclusions/Significance: Seminal plasma represents a robust source of potential peptide makers for primary PCa diagnosis. Our findings warrant further prospective validation to confirm the diagnostic potential of identified seminal biomarker candidates.</br&gt

    Does plant diversity affect the water balance of established grassland systems like in manipulative biodiversity experiments?

    Get PDF
    Land-use intensification and biodiversity loss are known drivers of the water cycle but their interactions are unclear. We investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from an experiment in which plant diversity was manipulated. In three Central European regions (“Biodiversity Exploratories”), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region). Land-use intensity increases in the order, pasture < mown pasture < meadow. In 2010-2015, we measured soil moisture, meteorological conditions, plant species richness, number of species in the functional groups of grasses, herbs, and legumes, and root biomass. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. Land-use and biodiversity effects on water fluxes were analyzed with repeated-measures analysis of variance. Land-use intensity did not affect water fluxes. Species richness did not influence DF and CR. ETa from topsoil decreased with increasing species richness while ETa from subsoil increased. Opposing effects on ETa in the two soil layers were also observed for the number of herbs and legumes. In manipulative biodiversity experiments, such opposing effects were explained by higher biomass in species-rich mixtures, which increases shading of topsoil and reduces evaporation. In subsoil, deeper roots in species-rich mixtures increased transpiration. In the commercially managed grasslands, biomass and species richness correlated negatively because fertilizer application increased biomass and decreased species richness. Thus, similar effects of biodiversity on water fluxes in commercially managed and experimentally manipulated grassland had different reasons. We speculate that improved infiltration and enhanced bioturbation in species-rich grassland explained our observations

    Measuring Outcome after Wrist Injury: Translation and Validation of the Swedish Version of the Patient-Rated Wrist Evaluation (PRWE-Swe)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for outcome measurement instruments for evaluation of disability after trauma. The Patient-Rated Wrist Evaluation (PRWE) is a self-administered region-specific outcome measuring instrument developed for use in evaluating disability and pain of the wrist. The aim of this study is to translate and to cross-culturally adapt the PRWE for use in a Swedish patient population. Moreover, we aim at investigating the PRWE in terms of validity, reliability and responsiveness.</p> <p>Methods</p> <p>We performed a translation and cross-cultural adaptation of the PRWE to Swedish (PRWE-Swe), utilising the process recommended by the American Association of Orthopedic Surgeons. A total of 124 patients with an injury to the wrist were included in the study. They filled in the PRWE and the DASH questionnaires at two separate occasions.</p> <p>Results</p> <p>Reliability of the PRWE in terms of internal consistency (Cronbach's alpha 0.97) and test-retest stability (intraclass correlation coefficient 0.93) were excellent. Face validity and content validity were judged as good. Criterion validity assessed as the correlation between the PRWE and the DASH was also good (Spearman's rho = 0.9). Responsiveness measured by the standardized response mean (SRM) was good with an SRM<sub>PRWE </sub>of 1.29.</p> <p>Conclusion</p> <p>This Swedish version of the PRWE is a short and easily understood self-administered questionnaire with good validity, reliability, and responsiveness. Our results confirm that the PRWE is a valuable tool in evaluating the results after treatment of a wrist injury.</p

    Fusion of Small Peroxisomal Vesicles in Vitro Reconstructs an Early Step in the in Vivo Multistep Peroxisome Assembly Pathway of Yarrowia lipolytica

    Get PDF
    We have identified and purified six subforms of peroxisomes, designated P1 to P6, from the yeast, Yarrowia lipolytica. An analysis of trafficking of peroxisomal proteins in vivo suggests the existence of a multistep peroxisome assembly pathway in Y. lipolytica. This pathway operates by conversion of peroxisomal subforms in the direction P1, P2→P3→P4→P5→P6 and involves the import of various peroxisomal proteins into distinct vesicular intermediates. We have also reconstituted in vitro the fusion of the earliest intermediates in the pathway, small peroxisomal vesicles P1 and P2. Their fusion leads to the formation of a larger and more dense peroxisomal vesicle, P3. Fusion of P1 and P2 in vitro requires cytosol and ATP hydrolysis and is inhibited by antibodies to two membrane-associated ATPases of the AAA family, Pex1p and Pex6p. We provide evidence that the fusion in vitro of P1 and P2 peroxisomes reconstructs an actual early step in the peroxisome assembly pathway operating in vivo in Y. lipolytica

    Auditory brainstem measures and genotyping boost the prediction of literacy : a longitudinal study on early markers of dyslexia

    Get PDF
    Literacy acquisition is impaired in children with developmental dyslexia resulting in lifelong struggle to read and spell. Proper diagnosis is usually late and commonly achieved after structured schooling started, which causes delayed interventions. Legascreen set out to develop a preclinical screening to identify children at risk of developmental dyslexia. To this end we examined 93 preliterate German children, half of them with a family history of dyslexia and half of them without a family history. We assessed standard demographic and behavioral precursors of literacy, acquired saliva samples for genotyping, and recorded speech-evoked brainstem responses to add an objective physiological measure. Reading and spelling was assessed after two years of structured literacy instruction. Multifactorial regression analyses considering demographic information, genotypes, and auditory brainstem encoding, predicted children’s literacy skills to varying degrees. These predictions were improved by adding the standard psychometrics with a slightly higher impact on spelling compared to reading comprehension. Our findings suggest that gene-brain-behavior profiling has the potential to determine the risk of developmental dyslexia. At the same time our results imply the need for a more sophisticated assessment to fully account for the disparate cognitive profiles and the multifactorial basis of developmental dyslexia

    Shikonin Increases Glucose Uptake in Skeletal Muscle Cells and Improves Plasma Glucose Levels in Diabetic Goto-Kakizaki Rats

    Get PDF
    Glucose is the most common substrate for energy metabolism. Despite the varying demands for glucose, the body needs to regulate its internal environment and maintain a constant and stable condition. Glucose homeostasis requires harmonized interaction between several tissues, achieving equilibrium between glucose output and uptake. In this thesis we aimed to investigate factors modulating glucose homeostasis in a rat model of type 2 diabetes, the Goto-Kakizaki (GK) rat. In addition, we investigated sex differences in hepatic carbohydrate and lipid metabolism in healthy rats. In Paper I, three-week but not three-day treatment with a Southeast Asian herb, Gynostemma pentaphyllum (GP), significantly reduced plasma glucose (PG) levels in GK rats. An intra-peritoneal glucose tolerance test (IPGTT) was significantly improved in GP-treated compared to placebo-treated group. In the GP treated rats, the glucose response in an intra-peritoneal pyruvate tolerance test was significantly lower, indicating decreased gluconeogenesis, and hepatic glucose output (HGO) was reduced. GP-treatment significantly reduced hepatic glycogen content, but not glycogen synthase activity. The study provides evidence that the GP extract exerted anti-diabetic effect in GK rats, reducing PG levels and HGO, suggesting that GP improves the hepatic insulin sensitivity by suppressing gluconeogenesis. In Paper II, shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increased glucose uptake in L6 myotubes, but did not phosphorylate Akt. Furthermore we found no evidence for the involvement of AMP activated protein kinase (AMPK) in shikonin induced glucose uptake. Shikonin increased the intracellular levels of calcium in these cells and stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myotubes. In GK rats treated with shikonin once daily for 4 days, PG levels were significantly decreased. In an insulin sensitivity test, the absolute PG levels were significantly lower in the shikonin-treated rats. These findings suggest that shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. In Paper III, GK and control Wistar rats were injected daily for up to 4 weeks with either a non-hematopoietic erythropoietin analog ARA290 or with placebo. PG levels in GK but not Wistar rats were significantly lower in ARA290-treated compared to placebo. After 2 and 4 weeks, the IPGTT was significantly improved in ARA290 treated GK rats. In insulin and pyruvate tolerance tests, glucose responses were similar in ARA290 and placebo groups. In isolated GK rat islets, glucose-stimulated insulin release was two-fold higher and islet intracellular calcium concentrations in response to several secretagogues were significantly higher in ARA290-treated than in placebo-treated GK rats. These findings indicate that treatment with ARA290 significantly improved glucose tolerance in diabetic GK rats, most likely due to improvement of insulin release. In Paper IV, sex differences in hepatic carbohydrate and lipid metabolism were characterized in healthy rats. No sex-differences were observed regarding hepatic triglyceride content, fatty acid oxidation rates or insulin sensitivity. Male rats had higher ratios of insulin to glucagon levels, increased hepatic glycogen content, a lower degree of AMPK phosphorylation, a higher rate of glucose production and higher expression levels of gluconeogenic genes, as compared to female rats. A sex-dependent response to mild starvation was observed with males being more sensitive. In conclusion, sex-differences reflect a higher capacity of the healthy male rat liver to respond to increased energy demands. Key words: glucose homeostasis, type 2 diabetes, GK rats, L6 myotubes, hepatic glucose output, insulin sensitivity, sex differences
    • …
    corecore