185 research outputs found
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
On Planetary Companions to the MACHO-98-BLG-35 Microlens Star
We present observations of microlensing event MACHO-98-BLG-35 which reached a
peak magnification factor of almost 80. These observations by the Microlensing
Planet Search (MPS) and the MOA Collaborations place strong constraints on the
possible planetary system of the lens star and show intriguing evidence for a
low mass planet with a mass fraction . A giant planet with is excluded from 95%
of the region between 0.4 and 2.5 from the lens star, where is the
Einstein ring radius of the lens. This exclusion region is more extensive than
the generic "lensing zone" which is . For smaller mass planets,
we can exclude 57% of the "lensing zone" for and 14% of
the lensing zone for . The mass fraction corresponds to an Earth mass planet for a lensing star of mass \sim
0.3 \msun. A number of similar events will provide statistically significant
constraints on the prevalence of Earth mass planets. In order to put our limits
in more familiar terms, we have compared our results to those expected for a
Solar System clone averaging over possible lens system distances and
orientations. We find that such a system is ruled out at the 90% confidence
level. A copy of the Solar System with Jupiter replaced by a second Saturn mass
planet can be ruled out at 70% confidence. Our low mass planetary signal (few
Earth masses to Neptune mass) is significant at the confidence
level. If this planetary interpretation is correct, the MACHO-98-BLG-35 lens
system constitutes the first detection of a low mass planet orbiting an
ordinary star without gas giant planets.Comment: ApJ, April 1, 2000; 27 pages including 8 color postscript figure
Measurement of tau polarization in e+ e- annihilation at sqrt{s}=58 GeV
The polarization of tau leptons in the reaction e+ e- --> tau+ tau- has been
measured using a e+e- collider, TRISTAN, at the center-of-mass energy of 58
GeV. From the kinematical distributions of daughter particles in tau --> e nu
nu-bar, mu nu nu-bar, rho nu or pi(K) nu decays, the average polarization of
tau- and its forward-backward asymmetry have been evaluated to be 0.012 +-
0.058 and 0.029 +- 0.057, respectively.Comment: 18 pages, 5 figure
Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --
Twelve high schools in Japan (of which six are in Fukushima Prefecture), four
in France, eight in Poland and two in Belarus cooperated in the measurement and
comparison of individual external doses in 2014. In total 216 high-school
students and teachers participated in the study. Each participant wore an
electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of
his/her whereabouts and activities. The distributions of annual external doses
estimated for each region overlap with each other, demonstrating that the
personal external individual doses in locations where residence is currently
allowed in Fukushima Prefecture and in Belarus are well within the range of
estimated annual doses due to the background radiation level of other
regions/countries
Belle II Technical Design Report
The Belle detector at the KEKB electron-positron collider has collected
almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an
upgrade of KEKB is under construction, to increase the luminosity by two orders
of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2
/s luminosity. To exploit the increased luminosity, an upgrade of the Belle
detector has been proposed. A new international collaboration Belle-II, is
being formed. The Technical Design Report presents physics motivation, basic
methods of the accelerator upgrade, as well as key improvements of the
detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
Aneuploidy and Confined Chromosomal Mosaicism in the Developing Human Brain
BACKGROUND: Understanding the mechanisms underlying generation of neuronal variability and complexity remains the central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy) have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain development and function are obscure. METHODOLOGY/PRINCIPAL FINDINGS: To address genomic variation during development we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25-1.45% per chromosome, with the overall percentage of aneuploidy tending to approach 30-35%. Furthermore, we found that mosaic aneuploidy can be exclusively confined to the brain. CONCLUSIONS/SIGNIFICANCE: Our data indicates aneuploidization to be an additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal instability, intercellural/intertissular genome diversity and human brain diseases
Partial Loss of Ataxin-1 Function Contributes to Transcriptional Dysregulation in Spinocerebellar Ataxia Type 1 Pathogenesis
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a CAG repeat that encodes a polyglutamine tract in ATAXIN1 (ATXN1). Molecular and genetic data indicate that SCA1 is mainly caused by a gain-of-function mechanism. However, deletion of wild-type ATXN1 enhances SCA1 pathogenesis, whereas increased levels of an evolutionarily conserved paralog of ATXN1, Ataxin 1-Like, ameliorate it. These data suggest that a partial loss of ATXN1 function contributes to SCA1. To address this possibility, we set out to determine if the SCA1 disease model (Atxn1154Q/+ mice) and the loss of Atxn1 function model (Atxn1−/− mice) share molecular changes that could potentially contribute to SCA1 pathogenesis. To identify transcriptional changes that might result from loss of function of ATXN1 in SCA1, we performed gene expression microarray studies on cerebellar RNA from Atxn1−/− and Atxn1154Q/+ cerebella and uncovered shared gene expression changes. We further show that mild overexpression of Ataxin-1-Like rescues several of the molecular and behavioral defects in Atxn1−/− mice. These results support a model in which Ataxin 1-Like overexpression represses SCA1 pathogenesis by compensating for a partial loss of function of Atxn1. Altogether, these data provide evidence that partial loss of Atxn1 function contributes to SCA1 pathogenesis and raise the possibility that loss-of-function mechanisms contribute to other dominantly inherited neurodegenerative diseases
- …