6,275 research outputs found

    Gravitational self-torque and spin precession in compact binaries

    Full text link
    We calculate the effect of self-interaction on the "geodetic" spin precession of a compact body in a strong-field orbit around a black hole. Specifically, we consider the spin precession angle ψ\psi per radian of orbital revolution for a particle carrying mass μ\mu and spin s≪(G/c)μ2s \ll (G/c) \mu^2 in a circular orbit around a Schwarzschild black hole of mass M≫μM \gg \mu. We compute ψ\psi through O(μ/M)O(\mu/M) in perturbation theory, i.e, including the correction δψ\delta\psi (obtained numerically) due to the torque exerted by the conservative piece of the gravitational self-field. Comparison with a post-Newtonian (PN) expression for δψ\delta\psi, derived here through 3PN order, shows good agreement but also reveals strong-field features which are not captured by the latter approximation. Our results can inform semi-analytical models of the strong-field dynamics in astrophysical binaries, important for ongoing and future gravitational-wave searches.Comment: 5 pages, 1 table, 1 figure. Minor changes to match published versio

    Regionally selective requirement for D1-D5 dopaminergic neurotransmisson in the medial prefrontal cortex in object-in-place associative recognition memorty:dopamine and object-in-place memory

    Get PDF
    Object-in-place (OiP) memory is critical for remembering the location in which an object was last encountered and depends conjointly on the medial prefrontal cortex, perirhinal cortex, and hippocampus. Here we examined the role of dopamine D(1)/D(5) receptor neurotransmission within these brain regions for OiP memory. Bilateral infusion of D(1)/D(5) receptor antagonists SCH23390 or SKF83566 into the medial prefrontal cortex, prior to memory acquisition, impaired OiP performance following a 5 min or 1 h delay. Retrieval was unaffected. Intraperirhinal or intrahippocampal infusions of SCH23390 had no effect. These results reveal a selective role for D(1)/D(5) receptors in the mPFC during OiP memory encoding

    Observation of coherent electron transport in self-catalysed InAs and InAs1–xSbx nanowires grown on silicon

    Get PDF
    We report the observation of phase coherent transport in catalyst-free InAs and InAs1–xSbx nanowires grown by molecular beam epitaxy on silicon (111) substrates. We investigate three different methods to gain information on the phase coherence length of the nanowires: first through the study of universal conductance fluctuations as a function of both magnetic field and gate voltage and then through localisation effects. The analysis of these different quantum effects gave consistent results and a phase-coherence length in the hundred nanometre range was extracted for all nanowires below 10 K. This demonstrates the potential of catalyst-free nanowires as building blocks for future quantum electronics devices directly integrated with silicon circuits

    Plasticity in Prefrontal Cortex Induced by Coordinated Synaptic Transmission Arising from Reuniens/Rhomboid Nuclei and Hippocampus

    Get PDF
    The nucleus reuniens and rhomboid nuclei of the thalamus (ReRh) are reciprocally connected to a range of higher order cortices including hippocampus (HPC) and medial prefrontal cortex (mPFC). The physiological function of ReRh is well predicted by requirement for interactions between mPFC and HPC, including associative recognition memory, spatial navigation, and working memory. Although anatomical and electrophysiological evidence suggests ReRh makes excitatory synapses in mPFC there is little data on the physiological properties of these projections, or whether ReRh and HPC target overlapping cell populations and, if so, how they interact. We demonstrate in ex vivo mPFC slices that ReRh and HPC afferent inputs converge onto more than two-thirds of layer 5 pyramidal neurons, show that ReRh, but not HPC, undergoes marked short-term plasticity during theta frequency transmission, and that HPC, but not ReRh, afferents are subject to neuromodulation by acetylcholine acting via muscarinic receptor M2. Finally, we demonstrate that pairing HPC followed by ReRh (but not pairing ReRh followed by HPC) at theta frequency induces associative, NMDA receptor dependent synaptic plasticity in both inputs to mPFC. These data provide vital physiological phenotypes of the synapses of this circuit and provide a novel mechanism for HPC–ReRh–mPFC encoding

    Quantum dot opto-mechanics in a fully self-assembled nanowire

    Get PDF
    We show that fully self-assembled optically-active quantum dots (QDs) embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighboring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism -- material strain -- are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum non-demolition readout of a QD state through a position measurement.Comment: 20 pages, 6 figure

    Induction of activity-dependent LTD requires muscarinic receptor activation in medial prefrontal cortex

    Get PDF
    The medial prefrontal cortex (mPFC) forms part of a neural circuit involved in the formation of lasting associations between objects and places. Cholinergic inputs from the basal forebrain innervate the mPFC and may modulate synaptic processes required for the formation of object-in-place memories. To investigate whether acetylcholine regulates synaptic function in the rat mPFC, whole-cell voltage-clamp recordings were made from pyramidal neurons in layer V. Bath application of the cholinergic agonist carbachol caused a potent and long-term depression (LTD) of synaptic responses that was blocked by the muscarinic receptor antagonist scopolamine and was mimicked, in part, by the M 1 receptor agonists McN-A-343 or AF102B. Furthermore, inhibition of PKC blocked carbachol-mediated LTD. We next determined the requirements for activity-dependent LTD in the prefrontal cortex. Synaptic stimulation that was subthreshold for producing LTD did, however, result in LTD when acetylcholine levels were enhanced by inhibition of acetylcholinesterase or when delivered in the presence of the M 1-selective positive allosteric modulator BQCA. Increasing the levels of synaptic stimulation resulted in M 1 receptor-dependent LTD without the need for pharmacological manipulation of acetylcholine levels. These results show that synaptic stimulation of muscarinic receptors alone can be critical for plastic changes in excitatory synaptic transmission in the mPFC. In turn, these muscarinic mediated events may be important in the formation of object-in-place memories. A loss of basal forebrain cholinergic neurons is a classic hallmark of Alzheimer's dementia and our results provide a potential explanation for the loss of memory associated with the disease

    In-Plane Magnetic Field Induced Anisotropy of 2D Fermi Contours and the Field Dependent Cyclotron Mass

    Full text link
    The electronic structure of a 2D gas subjected to a tilted magnetic field, with a strong component parallel to the GaAs/AlGaAs interface and a weak component oriented perpendicularly, is studied theoretically. It is shown that the parallel field component modifies the originally circular shape of a Fermi contour while the perpendicular component drive an electron by the Lorentz force along a Fermi line with a cyclotron frequency given by its shape. The corresponding cyclotron effective mass is calculated self-consistently for several concentrations of 2D carriers as a function of the in-plane magnetic field. The possibility to detect its field-induced deviations from the zero field value experimentally is discussed.Comment: written in LaTeX, 9 pages, 4 figures (6 pages) in 1 PS file (compressed and uuencoded) available on request from [email protected], SM-JU-93-
    • …
    corecore