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Associative recognition memory depends on the integration of

information concerning an item and the spatio-temporal

context in which it was encountered. Such an integration

depends on dynamic interactions across a brain-wide memory

network. Here we discuss evidence from multiple levels of

analysis, behavioural, cellular and synaptic which

demonstrating the existence of multiple overlapping,

subnetworks embedded within these large-scale networks.

Recent advances have revealed that of these subnetworks, a

distinct hippocampal-prefrontal networks are engaged by

different representations (object-spatial or object temporal).

Other subnetworks are recruited by distinct processing

demands, such as encoding and retrieval which are supported

by distinct cellular and synaptic processes. One challenge to

multi-level investigations of memory continues to be that

conclusions are drawn from correlations of effects rather than

from direct evidence of causation.
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Introduction
Recognition of an object, such as your car in a carpark can

be achieved by a judging the familiarity of the car’s

features (shape, model colour). However importantly

recognition can be greatly facilitated by also remember-

ing where it was parked in relation to other surrounding

stimuli, such as a tree, building or sign, that is, associated

spatial information or by remembering when it was

parked, that is, associated temporal information. Studies

of recognition memory, at systems, cellular, and synaptic

levels of experimental analysis have revealed that single

item and associative recognition are mediated by distinct

neural substrates. Thus, in the case of single item
Current Opinion in Behavioral Sciences 2020, 32:80–87 
recognition behavioural studies have shown that such

recognition is associated with differential neuronal acti-

vation in the perirhinal cortex PRH [1] and is impaired by

PRH damage [2]. Investigations at a cellular level have

shown that PRH neurons signal the familiarity of indi-

vidual stimuli by reductions in neuronal activity and

evidence at a synaptic and computational level show that

these response decrements can be mediated by synaptic

weakening [3,4]. Thus, the PRH is the site of storage for

information necessary for recognising single items. Asso-

ciative recognition, that is, for remembrance of the car

and surrounding stimuli, on the other hand requires

the integration of different types of information (item,

spatial, contextual, temporal). Consequently, evidence

has shown that this form of recognition memory engages

multiple brain regions including the prefrontal cortex

(PFC), areas within the medial temporal lobe (PRH,

hippocampus (HPC), entorhinal cortex (EC)) and distinct

thalamic nuclei, and that these regions operate within

neural circuits. Here, evidence from human and rodent

studies across behavioural and systems, cellular and syn-

aptic levels of analysis will be presented (note: there is

also consistent evidence from non-human primate studies

not presented here due to space constraints). The review

will explore how these networks operate, and how infor-

mation may be relayed within a brain-wide circuit to

support the processing of associative recognition memory

information.

Investigations at a behavioural and systems
level
Functional magnetic resonance imaging (fMRI) studies

using different stimuli, protocols and analyses have

demonstrated that successful associative memory perfor-

mance is correlated with increased activation within the

medial temporal lobe (HPC, parahippocampal cortex),

PFC and thalamus [5–8] and coordinated activity

between brain regions reveal task-related functional

connectivity [9,10] across highly distributed brain-wide

associative memory networks. The spatio-temporal

dynamics of fMRI studies have enabled an examination

of the neural regions and networks involved in memory

encoding and retrieval. Such studies have shown that

regional patterns of activity associated with encoding

are reinstated during successful retrieval [9], but recently

an analysis of network connectivity during encoding and

retrieval also demonstrated that depending on the type of

associative information (i.e. spatial or temporal) success-

ful retrieval required flexibility in the operation of neural

networks involved [11].
www.sciencedirect.com
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Consistent with the imaging data lesion studies in

humans have shown that damage in the PRH, EC para-

hippocampal cortices, HPC, PFC and thalamus impairs

associative recognition memory [12–14]. However,

depending on the location of the lesion, the precise nature

of the cognitive deficit varies. For example, damage in the

PRH has been reported to impair associative memory by

disrupting item memory, stimulus unitization [15,16] or

complex object discriminations [17]; HPC damage to
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impair the integration of different types of information

[18�] or relational memory [19] while damage in the PFC

appears to impair decision making and/or their use of

strategies for associative memory retrieval [20]. However,

in patients, damage is rarely restricted to a single brain

area, thus understanding memory processes solely from

these studies is limited and generalising observations

from small numbers of patients where damage is anatom-

ically restricted is also problematic. Hence a clear benefit
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may be derived from testing memory in animals with focal

lesions using tasks that appropriately model human

recognition memory processes.

Spontaneous preference tests, also called object recog-

nition tests, have been widely used, in our lab and others,

to assess recognition memory in rats and mice. These

tasks, which rely on an animals’ innate preference for

novelty in the environment, typically consist of two

phases, a ‘sample phase’ in which the animal explores

objects, and a ‘test phase’. To measure associative rec-

ognition memory two objects from the sample phase

exchange locations in the test phase, and the time spent

exploring the novel compared to the familiar object-

place configuration is used to measure memory perfor-

mance (for some variants of this task see Figure 1).

These tasks have the advantage of mapping closely onto

preferred-viewing tests of human recognition memory

[21,22]. Further in contrast to other memory tasks, such

as the delayed non-matching to sample task, these tests

of object recognition are not dependent on reinforce-

ment, thus do not require extensive training and are not

impacted by manipulations that affect motivation or rule

learning [21,23,24].

Using these object recognition tasks lesions in the PRH

[1,25,26], HPC [26,27] medial PFC (mPFC; specifically

the infralimbic and prelimbic cortices) [25,26,28–30],

lateral EC [31], postrhinal cortex [32], mediodorsal nuclei

of thalamus (MD) [29], nucleus reuniens of thalamus

(NRe) [33] produce deficits across multiple tasks

(object-in-place, temporal order or object-in-context).

Thus common cellular mechanisms maybe engaged for

both object-spatial/contextual and object-temporal asso-

ciations. These studies, the results of which are consistent

with human studies, do not indicate potential cellular

mechanisms or the importance of regional interactions in

memory formation.

One method which can be used to examine whether specific

brain areas operate within a memory circuit is a disconnec-

tion analysis. This approach involves placing unilateral

lesions in two different brain regions, for example the

PFC and HPC in opposite hemispheres. If this disconnec-

tion has a significant effect on behaviour, compared to

unilateral lesions placed in the same hemisphere, it is

concluded that the two brain regions form part of a functional

system [24,25, Figure 2a]. Using this technique, disconnec-

tion of pairs of structures including the HPC, PFC, other

medial temporal lobe regions (PRH, lateral EC, postrhinal

cortex) and MD [24,25,29,34–36] has been shown to signifi-

cantly impair object-in-place, temporal order, and object-in-

context recognition memory, consistent with the existence

of a brain-wide associative recognition memory network

(Figure 2b). However, these studies only rely on the tempo-

rary or permanent structural inactivation and do not provide

insights into network dynamics, routes or directionality of
Current Opinion in Behavioral Sciences 2020, 32:80–87 
the interaction during memory formation. As brain regions

are directly, indirectly and reciprocally interconnected

(Figure 2b) more specific projection targeting manipula-

tions, such as optogenetics or pharmacogenetics combined

with anterograde or retrograde viruses have been used.

One study [37��] investigated the importance of the direct

projection between separate regions of the CA1 hippo-

campal subfield and mPFC (CA1 ! mPFC) in associa-

tive memory for object-spatial or object temporal infor-

mation. Using a retrograde-pharmacogenetic approach

(Figure 3a;b) they were able to target populations of

CA1 ! mPFC neurons arising in the dorsal or the inter-

mediate region of the CA1 and found that deactivation of

the dorsal CA1 ! mPFC projection selectively impaired

object temporal order memory (Figure 3c). In contrast,

deactivation of the intermediate CA1 ! mPFC impaired

object-in-place memory, but was without effect on tem-

poral order memory (Figure 3d). Neither projection was

required for spatial temporal order memory (Figure 3c;d).

Thus, functionally distinct HPC-mPFC subnetworks

appear to mediate different recognition memory pro-

cesses [37��]. This complex segregation of function

within a memory network has not only been observed

in projections to the mPFC. A recent study [38��] tested

the role of output pathways from mPFC to the

NRe (mPFC ! NRe) and perirhinal cortex (mPFC !
PRH). Both pathways were necessary for memory perfor-

mance, but the mPFC ! NRe pathway was crucial

for working memory retrieval strategies whereas the

mPFC ! PRH pathway was crucial for a temporal con-

text retrieval strategy [38��]. Integration of these findings

and the results from lesion studies in rats [24,25,33] and

patients [19], together with recent studies describing

the complex organisation of the networks between the

mPFC and thalamic nuclei [39] indicate that the medial

prefrontal cortex is a key hub for both the formation,

integration and retrieval of associative recognition mem-

ory information.

Investigations at a cellular level
In vivo electrophysiological studies enable an examina-

tion of neuronal signatures of associative memory. In

humans, intracranial EEG (iEEG) recordings from elec-

trodes positioned subdurally or implanted into the medial

temporal or frontal lobe of epilepsy patients have exam-

ined activity of individual neurons and neural oscillation

across multiple frequency bands during associative mem-

ory encoding and retrieval using word-colour association

tasks, item-place task (i.e. navigating a virtual environ-

ment to deliver ‘items’ to a precise location) or a verbal

paired associate tasks [40–42]. These studies showed that

patterns of HPC and cortical activity observed during

memory encoding were reinstated during memory

retrieval but within a compressed timescale, and that

retrieval-related activity occurs first in the HPC in a

processes of pattern completion, before the reinstatement
www.sciencedirect.com
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Figure 2
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(a) Schematic showing the principle of disconnection technique, where the red cross indicates the placement of a lesion in the HPC or mPFC in

the same hemisphere (Ipsi) or opposite hemispheres (Contra). (b) Schematic of the associative recognition memory network identified by lesion

and disconnection studies. Major anatomical connections between regions are shown only. (HPC hippocampus; DG dentate gyrus mPFC medial

prefrontal cortex; LEC lateral entorhinal cortex; PRH perirhinal cortex; PoRH postrhinal cortex; NRe nucleus reuniens of the thalamus; MD medial

dorsal nucleus of the thalamus).
of activity in the cortex (for a recent review see Ref. [40]).

While the high temporal and spatial resolution offered by

the iEEG technique are of great value to elucidating

associative memory mechanisms, the range of brain

regions that have been examined are limited by the fact

that the placement of electrodes is determined by clinical

need. In animals, neuronal firing in the PRH, mPFC,
www.sciencedirect.com 
lateral EC and HPC are modulated by objects and object

place associations [43,44]. While neural spiking in differ-

ent regions appear to correspond to distinct features of the

task, the firing patterns across regions are temporally

coordinated suggesting that associative memory is depen-

dent on functional interactions between brain regions at

specific time points [45,46].
Current Opinion in Behavioral Sciences 2020, 32:80–87
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Figure 3
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Deactivation of anatomically distinct projections from CA1 to mPFC reveals contrasting roles in associative recognition memory. (a) and (b)

Strategy used to deactivate direct CA1 ! mPFC projections. A pseudo-rabies coated lentiviral vector expressing Lac-Z (EIAV-LacZ) injected into

medial prefrontal cortex (mPFC), and transported retrogradely to the soma of neurons projecting to mPFC. Cannulae were implanted bilaterally

either over the dorsal CA1 (dCA1,) or intermediate CA1 (iCA1,). The prodrug Daun-02 is infused through cannula into the HPC where it is

converted into daunorubicin resulting in selective deactivation of the CA1 ! mPFC. (c) Deactivation of dCA1 ! mPFC significantly impairs

temporal order memory not object-in-place or temporal location. (d) Deactivation of iCA1 ! mPFC significantly impaired object-in-place task but

not temporal order or temporal location. Memory performance expressed as mean discrimination ratio (time exploring novel object-time exploring

familiar object/total exploration) �sem. *** p < 0.001. Adapted from Ref. [32].
To explore, in detail, the brain-wide memory networks of

recognition memory, high resolution imaging of immedi-

ate early gene (IEG) expression in rodents has been used.

IEGS, such as c-fos and Arc, are readily expressed in brain

regions, following learning and importantly can reveal

activation within anatomical subregions, different cortical

layers and even different cell types. While IEGs are

indirect markers for neuronal activity, both c-fos and

Arc have been linked to synaptic plasticity processes,

such as long-term depression (LTD) and long-term

potentiation (LTP) associated with recognition memory

[47,48]. Hence expression patterns of these IEGs may

provide direct evidence of underlying cellular mecha-

nisms of memory formation.
Current Opinion in Behavioral Sciences 2020, 32:80–87 
IEG imaging has been used to map neural activation

across multiple dimensions of memory processing. Previ-

ous studies have compared activation to novel versus

familiar stimuli or novel versus familiar configurations

of stimuli, or object-spatial versus non-spatial and object

temporal order information. In one study the presentation

of novel object-place configurations produced greater c-fos
activation in area CA1 and postrhinal cortex, while famil-

iar object-place configurations produced greater c-fos acti-

vation in the area CA3 [49]. Imaging of c-fos has also been

combined with behavioural and computational analyses,

such as structural equation modelling, to correlate

changes in activity between brain regions after learning

and produce models of ‘best fit’. Application of structural
www.sciencedirect.com
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equation modelling to c-fos expression data acquired after

animals actively explored sequences of novel or familiar

objects revealed neural network models containing sepa-

rate processing pathways for novel and familiar informa-

tion; a ‘novel’ processing pathway from the lateral EC to

the dentate gyrus and CA3 via the perforant pathway, and

a ‘familiar’ processing pathway from lateral EC to CA1 via

the temporammonic pathway [50�,51]. In another study,

the high spatial resolution of this cellular imaging tech-

nique enabled an examination of the involvement of the

CA1 and CA3 subfields across the proximodistal axis of

the HPC in relation to object-place and temporal order

memory [52,53�]. By imaging Arc mRNA, Beer and col-

leagues reported that neurons in distal CA1 were tuned to

temporal information, whereas proximal CA1 and CA3

neurons were tuned to spatial information. This pattern of

neural activation parallels the topographical representa-

tion of object temporal and object-spatial information

revealed in behavioural studies [37��] and by combining

across different levels of analyses one can begin to under-

stand the complexities and intricacies of memory subnet-

works within the medial temporal lobe, and between the

medial temporal lobe and PFC.

Investigations at a synaptic and molecular
level
The imaging, lesion and electrophysiological techniques

described so far offer evidence of the structure of and

neural correlates of memory networks, but further insight

into the mechanisms of information processing and

storage may be achieved by identifying the cellular

mechanisms that within specific brain regions. One

way is to manipulate synaptic plasticity and examine

the effects of such manipulations on memory perfor-

mance. For example, it has been shown that induction

of LTP and LTD in the HPC and PRH is inhibited by

application of the competitive NMDA receptor antago-

nist AP5, [48,54]. In behavioural studies infusion of AP5

into the PRH impairs object recognition, and infusion of

AP5 into the PRH, HPC or mPFC impairs object-in-place

memory [55]. Interestingly there also appears to be a

strong correlation between the mechanisms of object

recognition memory and associative recognition memory

within PRH [56,57] but while the pharmacological stud-

ies provide evidence linking synaptic plasticity mecha-

nisms with behaviour, the effects of drugs like AP5 on

memory could be mediated by an LTP-like or an LTD-

like mechanism. Hence in a recent study, we examined

whether it was possible to dissociate the contribution of

LTP and LTD in the mPFC to recognition memory. This

study looked specifically at the role of cholinergic neuro-

transmission via distinct nicotinic receptor subtypes in

the mPFC. We found that nicotinic a7 receptors were

crucial for the induction of LTP but not LTD, and

blockade of nicotinic a7 receptors selectively impaired

object-in-place memory encoding. In contrast nicotinic

a4b2 receptors were crucial for the induction of LTD but
www.sciencedirect.com 
not LTP and blockade of these receptors impaired

object-in-place memory retrieval but was without effect

on encoding [58�]. Thus, combining studies at synaptic

and behavioural levels of analysis can reveal the cellular

mechanisms of memory formation, and how these relate

to the different stages of memory processing.

Conclusions
Our conceptualization of associative recognition memory

formation derives from evidence provided by different

levels of experimental analysis (behavioural, cellular

computational, synaptic, molecular) and by synthesising

information derived from both humans and animals.

Together studies have revealed the existence of multiple

medial temporal lobe-prefrontal cortex memory networks

the operation of which is determined by the ongoing

cognitive processing demands. Behavioural studies non-

invasive imaging and lesion studies show the necessity of

brain regions operating within brain-wide memory net-

works, and in vivo recording, synaptic and molecular

techniques enable measurement of the neural subpro-

cesses that underpin memory formation. Combining

evidence across levels of analysis provides the spatio-

temporal resolution required for a detailed dissection of

associative memory networks. Successful encoding

depends on neurons in the PRH coding object identity,

item information and relative familiarity, while in the

HPC information related to the spatial and/or temporal

context is acquired within segregated subnetworks. This

item-context information is integrated within the net-

work via direct CA1-mPFC projections. Retrieval is

mediated by projections from the mPFC to the thalamus

and medial temporal lobe. Thus the mPFC emerges as a

key associative memory node and indeed encoding and

retrieval of associative recognition memory representa-

tions depend on different synaptic plasticity mechanisms

in the mPFC. One challenge to multi-level investigations

of memory continues to be that conclusions are drawn

from correlations of effects rather than from direct evi-

dence of causation. Technological advances such as the

development of mouse lines with cell type specific

expression of CRE-recombinase, has allowed a more

direct examination of how memories may be organised.

In addition, the development of mouse lines where

neurons active within a specific time window can be

labelled, referred to as engram cells, allows examination

of the properties and functions of cells activated during a

specific learning event [59]. Application of these new

techniques, combined with precise behavioural protocols

that map human memory, as well as the increased ana-

tomical and temporal specificity afforded by high resolu-

tion fMRI and iEEG, will allow a deeper understanding

of both the micro-circuit and macro-circuit function of the

associative recognition memory network.

Conflict of interest statement
Nothing declared.
Current Opinion in Behavioral Sciences 2020, 32:80–87



86 Understanding memory: which level of analysis?
CRediT authorship contribution statement
Gareth RI Barker: Data curation, Methodology, Valida-

tion, Visualization, Investigation, Project administration.

Elizabeth Clea Warburton: Conceptualization, Funding

acquisition, Investigation, Resources, Project administra-

tion, Supervision, Visualization, Writing - original draft,

Writing - review & editing.

Acknowledgements
The work was supported by the Biotechnology and Biology Sciences
Research Council (BBSRC) grants BB100310X/1 and BB/L001896/1 and
BBSRC (studentship BB/J014400/1 and the Wellcome Trust (grant
206401/Z/17/Z).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Staresina BP, Davachi L: Selective and shared contributions of
the hippocampus and perirhinal cortex to episodic item and
associative encoding. J Cogn Neurosci 2008, 20:1478-1489.

2. Bussey TJ, Duck J, Muir J, Aggleton JP: Distinct patterns of
behavioural impairments resulting from fornix transection or
neurotoxic lesions of the perirhinal and postrhinal cortices in
the rat. Behav Brain Res 2000, 111:187-202.

3. Bogacz R, Brown MW: An anti-Hebbian model of familiarity
discrimination in the perirhinal cortex. Neurocomputing 2003,
52:1-6.

4. Brown MW, Warburton EC, Aggleton JP: Recognition memory:
material, processes, and substrates. Hippocampus 2010,
20:1228-1244.

5. Howard LR, Kumaran D, Olafsdottir HF, Spiers HJ: Double
dissociation between hippocampal and parahippocampal
responses to object-background context and scene novelty. J
Neurosci 2011, 31:5253-5261.

6. Pergola G, Ranft A, Mathias K, Suchan B: The role of the thalamic
nuclei in recognition memory accompanied by recall during
encoding and retrieval: an fMRI study. Neuroimage 2013,
74:195-208.

7. Hsieh LT, Gruber MJ, Jenkins LJ, Ranganath C: Hippocampal
activity patterns carry information about objects in temporal
context. Neuron 2014, 81:1165-1178.

8. Dennis NA, Overmanb AA, Gervera CR, McGrawb KE, Rowley MA,
Salernob JM: Different types of associative encoding evoke
differential processing in both younger and older adults:
evidence from univariate and multivariate analyses.
Neuropsychologia 2019, 135:107240.

9. King DR, Chastelaine M, Elward RL, Wang TH, Rugg MD:
Recollection-related increases in functional connectivity
predict individual differences in memory accuracy. J Neurosci
2015, 35:1763-1772.

10. Wagner IC, van Buuren M, Fernándeza G: Thalamo-cortical
coupling during encoding and consolidation is linked to
durable memory formation. NeuroImage 2019, 197:80-92.

11. Schedlbauer AM, Ekstrom AD: Flexible network community
organization during the encoding and retrieval of
spatiotemporal episodic memories. Network Neurosci 2019,
3:1070-1093.

12. Van Der Werf YD, Jolles J, Witter MP, Uylings HBM: Contributions
of thalamic nuclei to declarative memory functioning. Cortex
2003, 39:1047-1062.

13. Eichenbaum H, Yonelinas AP, Ranganath C: The medial temporal
lobe and recognition memory. Ann Rev Neurosci 2007, 30:123-152.
Current Opinion in Behavioral Sciences 2020, 32:80–87 
14. Danet L, Pariente J, Eustache P, Raposo N, Sibon I, Albucher JF,
Bonneville F, Peran P, Barbeau EJ: Medial thalamic stroke and
its impact on familiarity and recollection. eLife 2017, 6:e28141.

15. Lee ACH, Bussey TJ, Murray EA, Saksida LM, Epstein RA,
Kapur N, Hodges JR, Graham KS: Perceptual deficits in
amnesia: challenging the medial temporal lobe ‘mnemonic’
view. Neuropsychologia 2005, 43:1-11.

16. Delhaye E, Mechanic-Hamilton D, Saad L, Das SR, Wisse LEM,
Yushkevich PA, Wolk DA, Bastin C: Associative memory for
conceptually unitized word pairs in mild cognitive impairment
is related to the volume of the perirhinal cortex. Hippocampus
2019, 29:630-638.

17. Barense MD, Gaffan D, Graham KS: The human medial temporal
lobe processes online representations of complex objects.
Neuropsychologia 2007, 45 2963-29.

18.
�

Borders AA, Aly M, Parks CM, Yonelinas AP: The hippocampus is
particularly important for building associations across
stimulus domains. Neuropsychologia 2017, 99:335-342.

In this study associative memory was tested in patients with selective
hippocampal lesions or with more extensive MTL damage. The stimuli
were either pairs of items within the same stimulus domain (visual or
auditory) or across different domains (visual-auditory). Both groups of
patients were significantly more impaired (compared to control) in the
across-domain condition than the within-domain conditions indicating
that the hippocampus is crucial for forming associations between stimu-
lus domains.

19. Eichenbaum H: Prefrontal–hippocampal interactions in
episodic memory. Nat Rev Neurosci 2017, 18:547-558.

20. Swick D, Senkfor AJ, Petten CV: Source memory retrieval is
affected by aging and prefrontal lesions: behavioral and ERP
evidence. Brain Res 2006, 1107:161-176.

21. Manns JR, Stark CEL, Squire LR: The visual-paired comparison
task as a measure of declarative memory. Proc Natl Acad Sci U
S A 2000, 97:12375-12379.

22. Sivakumaran MH, Mackenzie AK, Callan IR, Ainge JA,
O’Connor AR: The discrimination ratio derived from novel
object recognition tasks as a measure of recognition memory
sensitivity, not bias. Sci Rep 2018, 8:11579 http://dx.doi.org/
10.1038/s41598-018-30030-7.

23. Ennaceur A, Delacour J: A new one-trial test for neurobiological
studies of rats 1: behavioral data. Behav Brain Res 1988, 31:47-59.

24. Ennaceur A: One-trial object recognition in rats and mice:
methodological and theoretical issues. Behav Brain Res 2010,
215:244-254.

25. Barker GRI, Bird F, Alexander V, Warburton EC: Recognition
memory for objects, place and temporal order: a
disconnection analysis of the role of the medial prefrontal
cortex and perirhinal cortex. J Neurosci 2007, 27:2948-2957.

26. Barker GRI, Warburton EC: When is the hippocampus involved
in recognition memory? J Neurosci 2011, 31:10721-10731.

27. Good MA, Barnes P, Staal V, McGregor A, Honey RC: Context-
but not familiarity-dependent forms of object recognition are
impaired following excitotoxic hippocampal lesions in rats.
Behav Neurosci 2007, 121:218-223.

28. Mitchell JB, Laiacona J: The medial frontal cortex and temporal
memory: tests using spontaneous exploratory behaviour in
the rat. Behav Brain Res 1998, 97:107-113.

29. Hannesson DK, Howland JG, Phillips AG: Interaction between
perirhinal and medial prefrontal cortex is required for temporal
order but not recognition memory for objects in rats. J
Neurosci 2004, 24:4596-4604.

30. CrossL,BrownMW,AggletonJP,Warburton EC: Themedialdorsal
thalamic nucleus and the medial prefrontal cortex of the rat
function together to support associative recognition and
recency but not item recognition. Learn Mem 2013, 20:41-50.

31. Wilson DIG, Watanabe S, Milner H, Ainge JA: Lateral entorhinal
cortex is necessary for associative but not non-associative
recognition memory. Hippocampus 2013, 23:1280-1290.
www.sciencedirect.com

http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0005
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0005
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0005
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0010
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0010
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0010
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0010
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0015
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0015
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0015
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0020
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0020
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0020
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0025
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0025
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0025
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0025
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0030
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0030
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0030
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0030
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0035
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0035
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0035
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0040
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0040
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0040
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0040
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0040
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0045
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0045
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0045
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0045
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0050
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0050
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0050
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0055
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0055
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0055
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0055
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0060
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0060
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0060
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0065
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0065
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0070
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0070
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0070
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0075
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0075
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0075
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0075
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0080
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0080
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0080
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0080
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0080
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0085
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0085
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0085
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0090
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0090
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0090
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0095
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0095
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0100
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0100
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0100
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0105
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0105
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0105
http://dx.doi.org/10.1038/s41598-018-30030-7
http://dx.doi.org/10.1038/s41598-018-30030-7
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0115
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0115
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0120
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0120
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0120
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0125
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0125
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0125
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0125
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0130
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0130
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0135
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0135
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0135
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0135
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0140
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0140
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0140
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0145
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0145
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0145
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0145
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0150
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0150
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0150
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0150
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0155
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0155
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0155


Circuits of associative recognition memory Barker and Warburton 87
32. Norman G, Eacott MJ: Dissociable effects of lesions to the
perirhinal cortex and the postrhinal cortex on memory for
context and objects in rats. Behav Neurosci 2005, 119:557-566.

33. Barker GRI, Warburton EC: A critical role for the nucleus
reuniens in long-term, but not short-term associative
recognition memory formation. J Neurosci 2018, 38:3208-3217.

34. de Souza Silva MA, Huston JP, Wang A-L, Petri D, Chao OY:
Evidence for a specific integrative mechanism for episodic
memory mediated by AMPA/kainate receptors in a circuit
involving medial prefrontal cortex and hippocampal CA3
region. Cereb Cortex 2016, 26:3000-3009.

35. Chao OY, Huston JP, Li JS, Wang AL, deSouza Silva MA: The
medial prefrontal cortex-lateral entorhinal cortex circuit is
essential for episodic-like memory and associative object
recognition. Hippocampus 2016, 26:633-645.

36. Heimer-McGinn VR, Poeta DL, Krishan A, Udawatta M,
Burwell RD: Disconnection of the perirhinal and postrhinal
cortices impairs recognition of objects in context but not
contextual fear conditioning. J Neurosci 2017, 37:4819-4829.

37.
��

Barker GRI, Banks PJ, Scott H, Ralph GS, Mitrophanous KA,
Wong LF, Bashir ZI, Uney JB, Warburton EC: Separate elements
of episodic memory subserved by distinct hippocampal-
prefrontal connections. Nat Neurosci 2017, 20:242-250.

In this study a retrograde pharmacogenetic technique was used to
separately deactivate the neural pathways from the dorsal or intermediate
CA1 region of the hippocampus to the medial prefrontal cortex while rats
were tested using a battery of recognition memory tasks. Recall of
temporal order memory was found to be dependent on the dorsal
projection, while recall of object-place recognition memory was found
to be dependent on the intermediate projection. These result show that
spatial and temporal aspects of recognition memory are processed in
parallel neural networks, and that the medial prefrontal cortex may serve
as a critical hub for memory integration.

38.
��

Jayachandran M, Linley SB, Schlecht M, Mahler SV, Vertes RP,
Allen TA: Prefrontal pathways provide top-down control of
memory for sequences of events. Cell Rep 2019, 28:640-654.

Jayachandran et al. demonstrate that the medial prefrontal cortex has
separate projections to the nucleus reuniens of the thalamus and peri-
rhinal cortex. The authors then demonstrate that these pathways differ-
entially control how an episodic-like memory is retrieved.

39. Collins DP, Anastasiades PG, Marlin JJ, Carter AG: Reciprocal
circuits linking the prefrontal cortex with dorsal and ventral
thalamic nuclei. Neuron 2018, 98:366-379.

40. Staresina BP, Wimber M: A neural chronometry of memory
recall. Trends Cog Sci 2019, 23:1071-1085.

41. Miller JF, Neufang M, Solway A, Armin Brandt A, Trippel M,
Mader I, Hefft S, Merkow M, Polyn SM, Jacobs J et al.: Neural
activity in human hippocampal formation reveals the spatial
context of retrieved memories. Science 2013, 342:1111-1114.

42. Yaffe RB, Kerr MSD, Damer S, Sarmaa SV, Inatic SK,
Zaghloulb KA: Reinstatement of distributed cortical
oscillations occurs with precise spatiotemporal dynamics
during successful memory retrieval. Proc Natl Acad Sci U S A
2014, 111:18727-18732.

43. Komorowski RW, Manns JR, Eichenbaum H: Robust conjunctive
item-place coding by hippocampal neurons parallels learning
what happens where. J Neurosci 2009, 29:9918-9929.

44. Bladon JH, Sheehan DJ, De Freitas CS, Howard MW: In a
temporally segmented experience hippocampal neurons
represent temporally drifting context but not discrete
segments. J Neurosci 2019, 39:6936-6952.

45. Kim J, Delcasso S, Lee I: Neural correlates of object-in-place
learning in hippocampus and prefrontal cortex. J Neurosci
2011, 31:16991-17006.

46. Keene CS, Bladon J, Mckenzie S, Liu CS, O’Keefe J,
Eichenbaum H: Complementary functional organisation of
www.sciencedirect.com 
neuronal activity patterns in the perirhinal, lateral entorhinal
and medial entorhinal cortices. J Neurosci 2016, 36:3660-3675.

47. Seoane A, Tinsley CJ, Brown MW: Interfering with fos
expression in rat perirhinal cortex impairs recognition
memory. Hippocampus 2012, 22:2101-2113.

48. Banks PJ, Bashir ZI, Brown MW: Recognition memory and
synaptic plasticity in the perirhinal and prefrontal cortices.
Hippocampus 2012, 22:2012-2031.

49. Wan H, Aggleton JP, Brown MW: Different contributions of the
hippocampus and perirhinal cortex to recognition memory. J
Neurosci 1999, 19:1142-1148.

50.
�

Albasser MM, Poirier GL, Aggleton JP: Qualitatively different
modes of perirhinal–hippocampal engagement when rats
explore novel vs. familiar objects as revealed by c-fos imaging.
Eur J Neurosci 2010, 31:134-147.

51. Kinnavane L, Albasser MM, Aggleton JP: Advances in the
behavioural testing and network imaging of rodent
recognition memory. Behav Brain Res 2015, 285:67-78.

52. Beer Z, Chwiesko C, Sauvage MM: Processing of spatial and
non-spatial information reveals functional homogeneity along
the dorso-ventral axis of CA3, but not CA1. Neurobiol Learn
Mem 2014, 111:56-64.

53.
�

Beer Z, Vavra P, Atucha E, Rentzing K, Heinze HJ, Sauvage MM:
The memory for time and space differentially engages the
proximal and distal parts of the hippocampal subfields CA1
and CA3. PLoS Biol 2018, 16:e2006100 http://dx.doi.org/10.1371/
journal.pbio.2006100.

The authors used an imaging approach to investigate neural activation
in discrete regions of the hippocampus following a object temporal or
object spatial recognition task. They found greater neural activation
(as measured by expression of Arc RNA) in proximal CA1, compared to
distal CA1 following object-spatial processing, and greater neural
activation in the distal CA1 compared to proximal CA1 following the
object temporal processing. This pattern suggests the existence of
functional subnetworks along the proximodistal axis of the
hippocampus.

54. Bannerman DM, Rawlins JNP, Good MA: The drugs don’t work -
or do they? Pharmacological and transgenic studies of the
contribution of NMDA and GluR-A-containing AMPA
receptors to hippocampal-dependent memory.
Psychopharmacology 2006, 188:552-566.

55. Brown MW, Barker GRI, Aggleton JP, Warburton EC: What
pharmacological interventions indicate concerning the role of
the perirhinal cortex in recognition memory. Neuropsychologia
2012, 50:3122-3140.

56. Barker GRI, Warburton EC, Koder T, Dolman NP, More JCA,
Aggleton JP, Bashir ZI, Auberson YP, Jane DE, Brown MW: The
different effects on recognition memory of perirhinal kainate
and NMDA glutamate receptor antagonism: implications for
underlying plasticity mechanisms. J Neurosci 2006, 26:3561-
3566.

57. Barker GRI, Warburton EC: NMDA receptor plasticity in the
perirhinal and prefrontal cortices is crucial for the acquisition
of long-term object-in-place associative memory. J Neurosci
2008, 28:2837-2844.

58.
�

Sabec MH, Wonnacott S, Warburton EC, Bashir ZI: Nicotinic
acetylcholine receptors control encoding and retrieval of
associative recognition memory through plasticity in the
medial prefrontal cortex. Cell Rep 2018, 22:3409-3415.

Sabec et al. reveal a divergence in function of prefrontal nicotinic receptor
subtypes in different stages of long-term associative recognition memory
that relates to bidirectional modulation of synaptic plasticity at hippo-
campal prefrontal synapses.

59. Tonegawa S, Liu X, Ramirez S, Redondo R: Memory engram cells
have come of age. Neuron 2015, 87:918-931.
Current Opinion in Behavioral Sciences 2020, 32:80–87

http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0160
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0160
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0160
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0165
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0165
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0165
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0170
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0170
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0170
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0170
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0170
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0175
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0175
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0175
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0175
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0180
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0180
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0180
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0180
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0185
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0185
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0185
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0185
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0190
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0190
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0190
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0195
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0195
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0195
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0200
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0200
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0205
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0205
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0205
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0205
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0210
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0210
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0210
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0210
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0210
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0215
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0215
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0215
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0220
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0220
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0220
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0220
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0225
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0225
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0225
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0230
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0230
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0230
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0230
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0235
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0235
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0235
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0240
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0240
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0240
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0245
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0245
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0245
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0250
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0250
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0250
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0250
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0255
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0255
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0255
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0260
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0260
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0260
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0260
http://dx.doi.org/10.1371/journal.pbio.2006100
http://dx.doi.org/10.1371/journal.pbio.2006100
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0270
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0270
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0270
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0270
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0270
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0275
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0275
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0275
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0275
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0280
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0280
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0280
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0280
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0280
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0280
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0285
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0285
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0285
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0285
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0290
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0290
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0290
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0290
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0295
http://refhub.elsevier.com/S2352-1546(20)30024-3/sbref0295

	Multi-level analyses of associative recognition memory: the whole is greater than the sum of its parts
	Introduction
	Investigations at a behavioural and systems level
	Investigations at a cellular level
	Investigations at a synaptic and molecular level
	Conclusions
	Conflict of interest statement
	References and recommended reading
	CRediT authorship contribution statement
	Acknowledgements


