12,603 research outputs found
New LHCb pentaquarks as hadrocharmonium states
New LHCb Collaboration results on pentaquarks with hidden charm [1] are
discussed. These results fit nicely in the hadrocharmonium pentaquark scenario
[2,3]. In the new data the old LHCb pentaquark splits into two
states and . We interpret these two almost degenerate
hadrocharmonium states with and as a result of
hyperfine splitting between hadrocharmonium states predicted in [2]. It arises
due to QCD multipole interaction between color-singlet hadrocharmonium
constituents. We improve the theoretical estimate of hyperfine splitting [2,3]
that is compatible with the experimental data. The new state finds
a natural explanation as a bound state of and a nucleon, with
, and binding energy 42 MeV. As a bound state of a spin-zero
meson and a nucleon, hadrocharmonium pentaquark does not experience
hyperfine splitting. We find a series of hadrocharmonium states in the vicinity
of the wide pentaquark that can explain its apparently large decay
width. We compare the hadrocharmonium and molecular pentaquark scenarios and
discuss their relative advantages and drawbacks.Comment: 10 page
Pentaquarks with hidden charm as hadroquarkonia
We consider hidden charm pentaquarks as hadroquarkonium states in a QCD
inspired approach. Pentaquarks arise naturally as bound states of quarkonia
excitations and ordinary baryons. The LHCb pentaquark is
interpreted as a -nucleon bound state with spin-parity . The
partial decay width MeV is calculated
and turned out to be in agreement with the experimental data for .
The pentaquark is predicted to be a member of one of the two almost
degenerate hidden-charm baryon octets with spin-parities .
The masses and decay widths of the octet pentaquarks are calculated. The widths
are small and comparable with the width of the pentaquark, and the
masses of the octet pentaquarks satisfy the Gell-Mann-Okubo relation.
Interpretation of pentaquarks as loosely bound and
deuteronlike states is also considered. We determine
quantum numbers of these bound states and calculate their masses in the
one-pion exchange scenario. The hadroquarkonium and molecular approaches to
exotic hadrons are compared and the relative advantages and drawbacks of each
approach are discussed.Comment: 33 pages, 2 figures, 3, tables; Minor changes, 2 references added;
Version published in Eur. Phys. J.
Continuum in the spin excitation spectrum of a Haldane chain, observed by neutron scattering in CsNiCl3
The spin excitation continuum, expected to dominate the low-energy
fluctuation spectrum in the Haldane spin chain around the Brillouin zone
center, q=0, is directly observed by inelastic magnetic neutron scattering in
the S=1 quasi-1D antiferromagnet CsNiCl3. We find that the single mode
approximation fails, and that a finite energy width appears in the dynamic
correlation function S(q,omega) for q < 0.5pi. The width increases with
decreasing q, while S(q,omega) acquires an asymmetric shape qualitatively
similar to that predicted for the 2-magnon continuum in the nonlinear
sigma-model.Comment: 4 pages, 3 figures, submitted to PR
Active shielding of magnetic field with circular space-time characteristic
Aim. The synthesis of two degree of freedom robust two circuit system of active shielding of magnetic field with circular spacetime characteristic, generated by overhead power lines with "triangle" type of phase conductors arrangements for reducing the magnetic flux density to the sanitary standards level and to reducing the sensitivity of the system to plant parameters uncertainty. Methodology. The synthesis is based on the multi-criteria game decision, in which the payoff vector is calculated on the basis of the Maxwell equations quasi-stationary approximation solutions. The game decision is based on the stochastic particles multiswarm optimization algorithms. The initial parameters for the synthesis by system of active shielding are the location of the overhead power lines with respect to the shielding space, geometry and number of shielding coils, operating currents, as well as the size of the shielding space and magnetic flux density normative value, which should be achieved as a result of shielding. The objective of the synthesis is to determine their number, configuration, spatial arrangementand and shielding coils currents, setting algorithm of the control systems as well as the resulting of the magnetic flux density value at the shielding space. Results. Computer simulation and field experimental research results of two degree of freedom robust two circuit system of active shielding of magnetic field, generated by overhead power lines with Β«triangleΒ» type of phase conductors arrangements are given. The possibility of initial magnetic flux density level reducing and system sensitivity reducing to the plant parameters uncertainty is shown. Originality. For the first time the synthesis, theoretical and experimental research of two degree of freedom robust two -circuit t system of active shielding of magnetic field generated by single-circuit overhead power line with phase conductors triangular arrangements carried out. Practical value. Practical recommendations from the point of view of the practical implementation on reasonable choice of the spatial arrangement of two shielding coils of robust two -circuit system of active shielding of the magnetic field with circular space-time characteristic generated by single-circuit overhead power line with phase conductors triangular arrangements are given.Π¦Π΅Π»Ρ. Π‘ΠΈΠ½ΡΠ΅Π· ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΠ±Π°ΡΡΠ½ΠΎΠΉ Π΄Π²ΡΡ
ΠΊΠΎΠ½ΡΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Ρ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ, Π³Π΅Π½Π΅ΡΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½ΡΡΡΠ½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠΌ ΠΏΠΎΠ΄Π²Π΅ΡΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ² Π΄Π»Ρ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π΄ΠΎ ΡΡΠΎΠ²Π½Ρ ΡΠ°Π½ΠΈΡΠ°ΡΠ½ΡΡ
Π½ΠΎΡΠΌ ΠΈ Π΄Π»Ρ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ. Π‘ΠΈΠ½ΡΠ΅Π· ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠΈΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠΎΡ
Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ³ΡΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΉ Π²ΡΠΈΠ³ΡΡΡ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π° Π² ΠΊΠ²Π°Π·ΠΈΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΌ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ³ΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΡΠΎΡ
Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΡΠ»ΡΡΠΈΠ°Π³Π΅Π½ΡΠ½ΠΎΠΉ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΠΌΡΠ»ΡΡΠΈΡΠΎΠ΅ΠΌ ΡΠ°ΡΡΠΈΡ. ΠΡΡ
ΠΎΠ΄Π½ΡΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠΈΡΡΠ΅ΠΌΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡΡΠ½ΠΎΠΉ
Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΠΊΡΠ°Π½ΠΈΡΡΠ΅ΠΌΠΎΠΌΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Ρ, Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΡ, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠ°Π±ΠΎΡΠΈΠ΅ ΡΠΎΠΊΠΈ Π»ΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΡ ΡΠΊΡΠ°Π½ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΈ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠΎ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠ°Π΄Π°ΡΠ΅ΠΉ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π°, ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΈ, ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΊΠΎΠ² ΡΠΊΡΠ°Π½ΠΈΡΡΡΡΠΈΡ
ΠΎΠ±ΠΌΠΎΡΠΎΠΊ, Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΡΠ°Π±ΠΎΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π² ΡΠΊΡΠ°Π½ΠΈΡΡΠ΅ΠΌΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΏΠΎΠ»Π΅Π²ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΠ±Π°ΡΡΠ½ΠΎΠΉ Π΄Π²ΡΡ
ΠΊΠΎΠ½ΡΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, Π³Π΅Π½Π΅ΡΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠΌ ΠΏΠΎΠ΄Π²Π΅ΡΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ². ΠΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠΎΠ²Π½Ρ ΠΈΠ½Π΄ΡΠΊΡΠΈΠΈ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Π²Π½ΡΡΡΠΈ ΡΠΊΡΠ°Π½ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΡΠΈΠ³ΠΈΠ½Π°Π»ΡΠ½ΠΎΡΡΡ. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΡΠΈΠ½ΡΠ΅Π·, ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΠ±Π°ΡΡΠ½ΠΎΠΉ Π΄Π²ΡΡ
ΠΊΠΎΠ½ΡΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, Π³Π΅Π½Π΅ΡΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½ΡΡΡΠ½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠΌ ΠΏΠΎΠ΄Π²Π΅ΡΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ². ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π½Π½ΠΎΡΡΡ. ΠΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠΌΡ Π²ΡΠ±ΠΎΡΡ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π²ΡΡ
ΡΠΊΡΠ°Π½ΠΈΡΡΡΡΠΈΡ
ΠΎΠ±ΠΌΠΎΡΠΎΠΊ Π΄Π²ΡΡ
ΠΊΠΎΠ½ΡΡΡΠ½ΠΎΠΉ ΡΠΎΠ±Π°ΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ Ρ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ, ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½ΡΡΡΠ½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠΌ ΠΏΠΎΠ΄Π²Π΅ΡΠΎΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΎΠ²
- β¦