91 research outputs found

    Phylogenetic Analysis of Cellulolytic Enzyme Genes from Representative Lineages of Termites and a Related Cockroach

    Get PDF
    The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Molecular Phylogeny and Evolution of Parabasalia with Improved Taxon Sampling and New Protein Markers of Actin and Elongation Factor-1α

    Get PDF
    BACKGROUND: Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa-in particular determining the root-is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. PRINCIPAL FINDINGS: Actin and elongation factor-1α genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. CONCLUSIONS/SIGNIFICANCE: We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids

    A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    Get PDF
    Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology

    Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining

    Get PDF

    Spatial and temporal trends of the Stockholm Convention POPs in mothers’ milk — a global review

    Get PDF

    Microstructural refinement and wear property of Al-Si-Cu composite subjected to extrusion and high-pressure torsion

    No full text
    The effect of high-pressure torsion (HPT) on the microstructure and the mechanical properties, especially the wear properties, of an Al-Si-Cu alloy (represented by Al-15%Si-2.5%Cu-0.5%Mg) and its composite, which was reinforced by SiC particles (SiCp) at a volume fraction of 5%, was investigated systematically in this study. The Al-Si-Cu/SiCp composite is produced in a powder metallurgy process followed by hot extrusion (EXTR) at 565°C. The EXTR specimen is also subjected to HPT processing at an anvil rotation speed of 0.5rpm under a quasi-hydrostatic pressure of 5GPa.HPT processing leads to a nanostructured microstructure comprised of equiaxed α-Al grains (60-70nm) and secondary particles and phases; the SiCp with a damaged facet, the phase exhibiting high Mg content and the intermetallic CuAl2 phase, for the Al-Si-Cu/SiCp composite. The values of the tensile strengths and hardness of the HPT specimens are nearly twice higher than those of the EXTR specimens for the Al-Si-Cu alloy and the Al-Si-Cu/SiCp composite. Ball-on-disc tests were used to examine the wear resistance of the processed materials. The wear test results indicated that HPT processing significantly reduces the wear loss, thereby leading to improvement in the load bearing capacity and the wear resistance of the Al-Si-Cu alloy and the Al-Si-Cu/SiCp composite. This behavior is linked to HPT processing, based on the refined and homogenous microstructure that results in an increase in the hardness. © 2014 Elsevier B.V
    • …
    corecore