44 research outputs found

    Improved treatment completion for tuberculosis patients: The case for a dedicated social care team

    Get PDF
    OBJECTIVES: The increasing social needs of people with Tuberculosis (TB), and the poor adherence to anti-TB therapy (ATT) associated with homelessness, drug or alcohol abuse, and prison history, led us to introduce a social care team (SCT) to support patient engagement with care within this low TB incidence setting. METHODS: Using a risk assessment, patients with social risk factors (SRF) for non-adherence to ATT are identified and a referral made to the SCT, who then provide intensive casework support for areas including homelessness, housing, benefits, debt and immigration. Retrospective data analysis of the social care database from 2017 to 2019 was conducted. Patients who were (n = 170) and were not referred to the SCT (n = 734) were compared. RESULTS: Patients referred were significantly more likely to complete treatment for TB than those not (88.2% versus 77.7% respectively, p = 0.0025), irrespective of receipt of Directly/Video Observed Therapy and adjusting for confounders. CONCLUSIONS: This paper demonstrates important evidence for the positive impact of a dedicated SCT within a TB service, and these improved treatment outcomes provide a strong argument for development of similar SCTs within UK TB services and similar healthcare settings

    Re-Evaluation of the Action Potential Upstroke Velocity as a Measure of the Na+ Current in Cardiac Myocytes at Physiological Conditions

    Get PDF
    Background: The SCN5A encoded sodium current (INa) generates the action potential (AP) upstroke and is a major determinant of AP characteristics and AP propagation in cardiac myocytes. Unfortunately, in cardiac myocytes, investigation of kinetic properties of INa with near-physiological ion concentrations and temperature is technically challenging due to the large amplitude and rapidly activating nature of INa, which may seriously hamper the quality of voltage control over the membrane. We hypothesized that the alternating voltage clamp-current clamp (VC/CC) technique might provide an alternative to traditional voltage clamp (VC) technique for the determination of INa properties under physiological conditions. Principal Findings: We studied INa under close-to-physiological conditions by VC technique in SCN5A cDNA-transfected HEK cells or by alternating VC/CC technique in both SCN5A cDNA-transfected HEK cells and rabbit left ventricular myocytes. In these experiments, peak INa during a depolarizing VC step or maximal upstroke velocity, dV/dtmax, during VC/CC served as an indicator of available INa. In HEK cells, biophysical properties of INa, including current density, voltage dependent (in)activation, development of inactivation, and recovery from inactivation, were highly similar in VC and VC/CC experiments. As an application of the VC/CC technique we studied INa in left ventricular myocytes isolated from control or failing rabbit hearts

    Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells

    Get PDF
    We investigated the contribution of the intracellular calcium (Cai2+) transient to acetylcholine (ACh)-mediated reduction of pacemaker frequency and cAMP content in rabbit sinoatrial nodal (SAN) cells. Action potentials (whole cell perforated patch clamp) and Cai2+ transients (Indo-1 fluorescence) were recorded from single isolated rabbit SAN cells, whereas intracellular cAMP content was measured in SAN cell suspensions using a cAMP assay (LANCE®). Our data show that the Cai2+ transient, like the hyperpolarization-activated “funny current” (If) and the ACh-sensitive potassium current (IK,ACh), is an important determinant of ACh-mediated pacemaker slowing. When If and IK,ACh were both inhibited, by cesium (2 mM) and tertiapin (100 nM), respectively, 1 μM ACh was still able to reduce pacemaker frequency by 72%. In these If and IK,ACh-inhibited SAN cells, good correlations were found between the ACh-mediated change in interbeat interval and the ACh-mediated change in Cai2+ transient decay (r2 = 0.98) and slow diastolic Cai2+ rise (r2 = 0.73). Inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (5 μM) facilitated ACh-mediated pacemaker slowing. Furthermore, ACh depressed the Cai2+ transient and reduced the sarcoplasmic reticulum (SR) Ca2+ content, all in a concentration-dependent fashion. At 1 μM ACh, the spontaneous activity and Cai2+ transient were abolished, but completely recovered when cAMP production was stimulated by forskolin (10 μM) and IK,ACh was inhibited by tertiapin (100 nM). Also, inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (25 μM) exaggerated the ACh-mediated inhibition of cAMP content, indicating that Cai2+ affects cAMP production in SAN cells. In conclusion, muscarinic receptor stimulation inhibits the Cai2+ transient via a cAMP-dependent signaling pathway. Inhibition of the Cai2+ transient contributes to pacemaker slowing and inhibits Cai2+-stimulated cAMP production. Thus, we provide functional evidence for the contribution of the Cai2+ transient to ACh-induced inhibition of pacemaker activity and cAMP content in rabbit SAN cells

    A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship

    Get PDF
    The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different atrial arrhythmic propagation patterns and the electrograms observed at more than 43000 points on the atrial surface.This work was partially supported by the Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, Ministerio de Ciencia e Innovacion of Spain (TEC2008-02090), by the Plan Avanza (Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion), Ministerio de Industria Turismo y Comercio of Spain (TSI-020100-2010-469), by the Programa Prometeo 2012 of the Generalitat Valenciana and by the Programa de Apoyo a la Investigacion y Desarrollo de la Universitat Politecnica de Valencia (PAID-06-11-2002). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Tobón Zuluaga, C.; Ruiz Villa, CA.; Heidenreich, E.; Romero Pérez, L.; Hornero, F.; Saiz Rodríguez, FJ. (2013). A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship. PLoS ONE. 8(2):1-13. https://doi.org/10.1371/journal.pone.0050883S11382Ho SY, Sanchez-Quintana D, Anderson RH (1998) Can anatomy define electric pathways? In: International Workshop on Computer Simulation and Experimental Assessment of Electrical Cardiac Function, Lausanne, Switzerland. 77–86.Tobón C (2009) Evaluación de factores que provocan fibrilación auricular y de su tratamiento mediante técnicas quirúrgicas. Estudio de simulación. Master Thesis Universitat Politècnica de València.Ruiz C (2010) Estudio de la vulnerabilidad a reentradas a través de modelos matemáticos y simulación de la aurícula humana. Doctoral Thesis Universitat Politècnica de València.Tobón C (2010) Modelización y evaluación de factores que favorecen las arritmias auriculares y su tratamiento mediante técnicas quirúrgicas. Estudio de simulación. Doctoral Thesis Universitat Politècnica de València.Henriquez, C. S., & Papazoglou, A. A. (1996). Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis. Proceedings of the IEEE, 84(3), 334-354. doi:10.1109/5.486738Grimm, R. A., Chandra, S., Klein, A. L., Stewart, W. J., Black, I. W., Kidwell, G. A., & Thomas, J. D. (1996). Characterization of left atrial appendage Doppler flow in atrial fibrillation and flutter by Fourier analysis. American Heart Journal, 132(2), 286-296. doi:10.1016/s0002-8703(96)90424-xMaleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). K+ current changes account for the rate dependence of the action potential in the human atrial myocyte. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1398-H1410. doi:10.1152/ajpheart.00411.200
    corecore