269 research outputs found

    Further developments in the conflation of CFD and building simulation

    Get PDF
    To provide practitioners with the means to tackle problems related to poor indoor environments, building simulation and computational fluid dynamics can usefully be integrated within a single computational framework. This paper describes the outcomes from a research project sponsored by the European Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model and describes the method used to integrate the thermal and flow domains

    To realisation of chromatic polynomial calculation algorithm

    Get PDF
    We calculate chromatic polynomial of an undirected graph using the fundamental reduction theorem and reducing to complete graphs. We also find the chromatic number using the chromatic polynomial. The C++ program was created, the result is obtained in the form of falling factorials and afterwards by the powers of x, the applications of chromatic polynomial are given

    Experimental and numerical study of local mean age of air

    Get PDF
    This paper presents the results from the experimental and numerical study of a room with mixing ventilation, focused on the local mean age of air (LMA). The measurements were performed using the tracer gas concentration decay method. The numerical predictions were obtained from the computational fluid dynamics (CFD) module of the latest version of the ESP-r software

    Ab initio and nuclear inelastic scattering studies of Fe3_3Si/GaAs heterostructures

    Full text link
    The structure and dynamical properties of the Fe3_3Si/GaAs(001) interface are investigated by density functional theory and nuclear inelastic scattering measurements. The stability of four different atomic configurations of the Fe3_3Si/GaAs multilayers is analyzed by calculating the formation energies and phonon dispersion curves. The differences in charge density, magnetization, and electronic density of states between the configurations are examined. Our calculations unveil that magnetic moments of the Fe atoms tend to align in a plane parallel to the interface, along the [110] direction of the Fe3_3Si crystallographic unit cell. In some configurations, the spin polarization of interface layers is larger than that of bulk Fe3_3Si. The effect of the interface on element-specific and layer-resolved phonon density of states is discussed. The Fe-partial phonon density of states measured for the Fe3_3Si layer thickness of three monolayers is compared with theoretical results obtained for each interface atomic configuration. The best agreement is found for one of the configurations with a mixed Fe-Si interface layer, which reproduces the anomalous enhancement of the phonon density of states below 10 meVComment: 14 pages, 9 figures, 4 table

    Origin of a Simultaneous Suppression of Thermal Conductivity and Increase of Electrical Conductivity and Seebeck Coefficient in Disordered Cubic Cu2ZnSnS4

    Get PDF
    The parameters governing the thermoelectric efficiency of a material, Seebeck coefficient, electrical, and thermal conductivities, are correlated and their reciprocal interdependence typically prevents a simultaneous optimization. Here, we present the case of disordered cubic kesterite Cu2_{2}ZnSnS4_{4}, a phase stabilized by structural disorder at low temperature. With respect to the ordered form, the introduction of disorder improves the three thermoelectric parameters at the same time. The origin of this peculiar behavior lies in the localization of some Sn lone pair electrons, leading to “rattling” Sn ions. On one hand, these rattlers remarkably suppress thermal conductivity, dissipating lattice energy via optical phonons located below 1.5 THz; on the other, they form electron-deficient Sn—S bonds leading to a p-type dopinglike effect and highly localized acceptor levels, simultaneously enhancing electrical conductivity and the Seebeck coefficient. This phenomenon leads to a 3 times reduced thermal conductivity and doubling of both electrical conductivity and the Seebeck coefficient, resulting in a more than 20 times increase in figure of merit, although still moderate in absolute terms

    Effect of Ti-doping on the electrochemical performance of lithium vanadium(III) phosphate

    Get PDF
    © 2014, Springer-Verlag Berlin Heidelberg. Carbon-coated and titanium-substituted lithium vanadium phosphate composites have been successfully prepared through a sol-gel method followed by solid-state reaction under argon. Li3V1.9Ti0.1(PO4)3-C (LVT10PC) and Li3V1.85Ti0.15(PO4)3-C (LVT15PC) were investigated using X-ray powder diffraction, thermal analysis, transmission electron microscopy, cyclic voltammetry, and galvanostatic tests. Different models for the solid solution mechanism in this system are discussed. Electrochemical tests, at a charge-discharge rate of 0.2 C, in the range 2.8–4.4 V show that LVT10PC delivers the highest discharge capacity of 121 mA h g−1and declines to 115.7 mA h g−1up to the 60th cycle, corresponding to a 4.4 % loss. At low levels, titanium substitution is found to increase initial discharge capacity compared to the carbon-coated unsubstituted system (LVPC). Further substitution is found to have detrimental effects on initial discharge capacity and cycling behaviour.This study was supported by Project BG051PO001/3.3-05-0001 “Science and Business” and “Human Resources Development” Operational Programme co-financed by the European Social Fund of the EU and the Bulgarian national budget

    Simultaneous Absolute Timing of the Crab Pulsar at Radio and Optical Wavelengths

    Full text link
    The Crab pulsar emits across a large part of the electromagnetic spectrum. Determining the time delay between the emission at different wavelengths will allow to better constrain the site and mechanism of the emission. We have simultaneously observed the Crab Pulsar in the optical with S-Cam, an instrument based on Superconducting Tunneling Junctions (STJs) with μ\mus time resolution and at 2 GHz using the Nan\c{c}ay radio telescope with an instrument doing coherent dedispersion and able to record giant pulses data. We have studied the delay between the radio and optical pulse using simultaneously obtained data therefore reducing possible uncertainties present in previous observations. We determined the arrival times of the (mean) optical and radio pulse and compared them using the tempo2 software package. We present the most accurate value for the optical-radio lag of 255 ±\pm 21 μ\mus and suggest the likelihood of a spectral dependence to the excess optical emission asociated with giant radio pulses.Comment: 8 pages; accepted for publication in Astronomy and Astrophysic
    corecore