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Abstract 

Carbon coated and titanium substituted lithium vanadium phosphate composites have been successfully prepared 

through a sol-gel method followed by solid state reaction under argon. Li3V1.9Ti0.1(PO4)3-C (LVT10PC) and 

Li 3V1.85Ti0.15(PO4)3-C (LVT15PC) were investigated using X-ray powder diffraction, thermal analysis, transmission 

electron microscopy, cyclic voltammetry and galvanostatic tests. Different models for the solid solution mechanism 

in this system are discussed. Electrochemical tests, at a charge-discharge rate of 0.2C, in the range 2.8-4.4 V, show 

that LVT10PC delivers the highest discharge capacity of 121 mA h g-1 and declines to 115.7 mA h g-1, up to the 60th 

cycle, corresponding to a 4.4% loss. At low levels, titanium substitution is found to increase initial discharge 

capacity, compared to the carbon coated unsubstituted system (LVPC). Further substitution is found to have 

detrimental effects on initial discharge capacity and cycling behaviour.  
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1. Introduction 

The storage of electrical energy is a key element in the development of future technologies particularly in 

areas such as transport and alternative energy production (solar and wind). Among battery systems, lithium-ion 

systems are arguably the most advanced, but the technology is currently too expensive, for widespread large-scale 

application. In particular, alternatives to the current generation of cathode materials, such as the expensive and toxic 

LiCoO2 [1], are being sought to meet the requirements of high energy density and long cycle-life. In addition, 

systems should be environmental benign and inexpensive. One of the materials which meets these requirements and 

has been implemented in the industry is LiFePO4 [2]. Other phosphate and flourophosphate materials such as 

Li 3V2(PO4)3 [3,4], LiMnPO4 [5], LiCoPO4 [6], LiNiPO4 [7], LiVPO4F [8] etc. are considered to be the next 

generation of commercial cathodes due to their higher output voltage and energy density compared to LiFePO4. 

However, these materials have some drawbacks that hinder their commercialization, such as low electronic and ionic 

conductivity and instability during operation [9,10]. Although the problem of low electronic conductivity has been 

addressed for some of these materials by applying so-called carbon coating [11-13], other issues like short cycle-life 

remain. 

The high theoretical specific capacity of lithium vanadium(III) phosphate, Li3V2(PO4)3 (LVP), with a value 

of 197 mA h g-1 for removal of three moles of lithium per mole, makes it of particular interest. Four characteristic 

plateaus are observed on de-intercalation versus Li/Li + at 3.6 and 3.68 V, 4.2 V and over 4.5 V, the first two of which 

correspond to the first lithium extraction, with the higher potentials corresponding to second and third lithium 

extractions [14]. Unfortunately, a decline in discharge capacity at high potentials limits the operational voltage range 

from 3.0 to 4.4 V [15,16] and reduces the theoretical specific capacity to ~131.5 mA h g-1 for two moles of lithium 

per mole LVP. This decline in capacity at high potentials is associated with structural instability. Partial substitution 

of vanadium and or phosphorus represents one possible route to greater stability. Vanadium substitution with Cr, Mo, 

Y, Al etc. [17-20] has been carried out, while anion substitution has also been investigated, for example through 

substitution by Cl [20]. In the present work, we investigate aliovalent substitution of VIII  by TiIV in LVP. To our 

knowledge, only two previous studies have examined titanium substitution in LVP.  Matesheyna and Uvarov [21] 

studied the di-substituted system Li3Mg0.1Ti0.1V1.8(PO4)3 and found no improvement in electrochemical performance 

in the substituted system. Liu et al. [22] studied the single substituted system and found that Li2.8V1.8Ti0.2(PO3)3 

exhibited an orthorhombic structure, with improved electrochemical performance. Here we examine the effect of 

low levels of Ti substitution on the electrochemical performance of LVP, whilst in the monoclinic phase in two 

representative compositions.  

2. Experimental 

2.1 Preparations 
Carbon coated samples of Li3V2-xTix(PO4)3 (x = 0.10 and 0.15) , were synthesized via a three-step sol-gel 

method. Stoichiometric amounts of V2O5 (synthesized by decomposition of NH4VO3 at 320°C, Fluka, >99%) and 

H2C2O4.2H2O (Sigma-Aldrich, ≥98.5%) were dissolved in distilled water to give a blue solution (ca. 0.7 and 1.4 mol 

dm-3 for V5+ and C2O4
2-, respectively ) To this was added separate solutions of stoichiometric amounts of LiOH.H2O 

(Sigma-Aldrich, ≥98%) and (NH4)H2PO4 (Sigma-Aldrich, ≥98%) dissolved in distilled water (ca. 2.21 mol dm-3 for 
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both Li+ and PO4
3-. NH2CH2COOH, (glycine, Sigma-Aldrich, ≥98.5%) dissolved in distilled water (ca. 1.32 mol dm-

3) was used a carbon source and added to the above solution. The preliminary calculations were for ~6% carbon 

coating. To amount of glyciene added was based on tests of glyciene combustion under identical conditions to the 

sample. The final solution was evaporated with constant stirring at 80 °C for ca. 4 h until gelation occurred. 

Stoichiometric amounts (for x = 0.10 and 0.15) of TiO2 powder (Sigma-Aldrich >99%) were added to the gel and 

thoroughly stirred until homogeneously dispersed. The mixture was dried in an oven at 120 °C for 16 h. The 

resulting precursor was heated at 370 °C for 4 h under flowing argon, to remove the ammonia and water. After 

cooling, the sample was ground for 30 min and then annealed at 800 °C for 10 h under Ar.  

 

2.2 Sample characterisation 
X-ray powder diffraction (XRD) data were collected on a PANalytical X’Pert Pro diffractometer, fitted with 

an X’Celerator detector, using Ni-filtered Cu-Kα radiation (λ = 1.5418 Å), over the 2θ range 5-120°, with a step 

width of 0.033° and an effective scan time of 200 s per step at room temperature. Diffraction data were modelled by 

Rietveld analysis using the GSAS suite of programmes [23]. The structure of Li3V2(PO4)3 [24] was used as a starting 

model. A small amount (ca. 1% by weight) of VO was included as a secondary phase, with a starting model based 

on the structure presented by Loehman et al. [25].  

Thermogravimetric (TGA) and differential thermal (DTA) analyses were carried out in air on a Stanton 

Redcroft STA 1500 thermal analyser, in the range 20-760 °C, at a heating rate of 20°C per min. Transmission 

Electron Microscopy (TEM) was carried out on a JEOL JEM 2010 microscope, with an accelerating voltage of 200 

kV and a beam current of 106 µA. The evaluation of specific surface area (SSA) was performed by the Brunauer-

Emmett-Teller (BET) method on a Strohlein & Co. Area instrument. 

 

2.3 Electrochemical testing 
The obtained materials were tested electrochemically in two-electrode laboratory cells. The working 

electrodes were prepared by mixing the active material (AM), PVDF (MTI corp., USA) and acetylene black (AB) 

P1042 in N-methyl-2-pyrrolidone (NMP, MTI corp., USA). The ratio of the slurry was AM:PVDF 70:10 wt.% as the 

remaining 20 wt% consisted of acetylene black and the carbon coating of the active material. The slurries were 

stirred for 24 h and then coated onto aluminum foil. The coated foils were dried under vacuum at 120 °C for 24 h. 

Cells were assembled using lithium foil (Alfa Aeser) as the counter electrode, with Freudenberg FS 2190 as a 

separator. The electrolyte used was 1M LiClO4 (Alfa Aeser) in a 1:1 (v/v) mixture of ethylene carbonate (EC) and 

dimethyl carbonate (DMC) (both purchased from Alfa Aeser). Electrochemical galvanostatic tests were performed 

on a Neware Battery Testing System (V-BTS8-3) in the voltage ranges 2.8 - 4.4 V, at a C/5 (0.2C) rate, where C is 

the theoretical specific capacity for 3 moles of extracted Li, i.e. ~197 mA h g-1 and 5 is the charge or discharge time 

in hours. 

Cyclic voltammetry (CV) was performed on a VersaSTAT MC (Princeton Applied Research) multi-channel 

potentiostat/galvanostat, in the voltage range 2.8 - 4.8 V, with a step rate of 20 µV s-1, where the counter Li electrode 

was also used as a reference as its polarization is negligible. 
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3. Results and Discussion 

The fitted diffraction profiles for Li3V1.9Ti0.1(PO4)3-C (LVT10PC) and Li3V1.85Ti0.15(PO4)3-C (LVT15PC) 

are shown in Fig. 1, with the corresponding crystal and refinement data in Table 1. The data fitted well to the 

monoclinic structure of Li3V2(PO4)3 [24]. In both samples a small amount of vanadium is reduced to the +2 

oxidation state to form VO (ca. 1 wt%). Volume is seen to increase with increasing titanium content and compares 

with a value of 874 Å3 for the unsubstituted system prepared under similar conditions [26]. This is in contrast to the 

previously reported work [22], where at the x = 0.2 level of substitution, titanium substituted lithium vanadium 

phosphate was seen to have a smaller unit cell volume than the unsubstituted system, accompanied by a change in 

symmetry to orthorhombic. In order to explain this apparent discrepancy, it is important here to consider the possible 

methods of solid solution formation. Under the reaction conditions described above, three main possibilities exist for 

solid solution formation with the associated charge compensation. 

 

1. Lithium vacancy formation: 

VV
x + LiLi

x → TiV
• + VLi

′ 

 

2. Vanadium reduction: 

2VIII
V

x
 → VII

V
′ + TiIVV

• 

 

3. Titanium reduction: 

VIII
V

x
 → TiIII V 

 

In the work by Liu et al. [22], the first mechanism was assumed in the formulation. In the present work, the amount 

of lithium in the sample was kept constant. Therefore, if the first mechanism was correct, then there would have 

been an excess of lithium in the sample. However, it would be unlikely that any lithium containing secondary phases 

would be seen in the X-ray diffraction patterns, as they would be beyond the detection limit of the technique. In 

order, to deduce which mechanism operates in the present case it is helpful to examine the predicted change in unit 

cell volume for the three mechanisms. The ionic radii for the species involved are 0.640, 0.79, 0.605 and 0.670 Å for 

V3+, V2+, Ti4+ and Ti3+, respectively, for the ions in six-fold coordination with oxide ions [27]. This means that 

mechanisms 2 and 3 would be expected to result in larger unit cell volumes, while mechanism 1 would be expected 

to yield a smaller unit cell volume. Therefore the results of the present study are consistent with mechanisms 2 and 

3. 

 Further evidence for the charge compensation mechanism can be found in the thermogravimetric data. Fig. 

2 shows the DTA/TGA thermograms for the studied compositions. The initial weight loss of around 1 to 2% at ca. 

100°C can be attributed to a small amount of adsorbed water in the powder samples. At temperatures above ca. 

300°C, both samples show significant weight losses (6.24% for LVT10PC and 4.54% for LVT15PC) associated with 

the exothermic burning of the carbon coating. In both cases the TGA traces reach a minimum at around 520°C 

followed by an exothermic mass gain, associated with oxidation. Primarily, this oxidation is of VIII , however the 
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small feature seen in the trace for the x = 0.1 composition at around 580°C appears more significant in the x = 0.15 

composition and suggests that this process has at least two stages, which is again consistent with mechanisms 2 and 

3. The existence of VO as a small secondary component in the samples suggests that the conditions used in the 

experiment readily stabilise divalent vanadium. 

TEM images of the studied samples are shown in Fig. 3. Besides the thin layer of carbon coating, the two 

materials show amounts of carbon (red arrows) around the active material particles. The particle (cluster) size varies 

significantly from 0.2-8 µm for LVT10PC and 0.5-10 µm for LVT15PC (darker particles in Figs. 3a and 3c). The 

average particle size distribution is in the range 0.5-1.5 µm and 2-10 µm for LVT10PC and LVT15PC respectively. 

This is supported by specific surface area measurements, which show values of 55.64 m2 g-1 and 42.48 m2 g-1 for the 

x = 0.1 and 0.15 compositions, respectively. 

Cyclic voltammagrams for the studied composites are presented in Fig. 4. Both voltammagrams show 

oxidation potentials at around 3.62, 3.70, 4.12, with the fourth oxidation peak at 4.57 and 4.55 V for LVT10PC and 

LVT15PC, respectively. The four peaks are associated with the four stages of Li de-intercalation and the 

corresponding oxidation of vanadium [14]. The third and fourth peaks in the oxidation curve are replaced by a single 

broad peak at around 3.9 V on reduction. In the titanium substituted samples, this reduction peak occurs at lower 

potential than in the unsubstituted parent compound [14], which is observed at 4.03 V. The last two reduction peaks 

are at around 3.63 and 3.56 V. The hysteresis in observed in oxidation and reduction has been examined in detail in 

the parent LVP material by Yin et al. [24]. Using 7Li solid state NMR and neutron diffraction, these authors showed 

that vanadium charge distribution and Li site ordering is lost on full de-intercalation (charge) and that on subsequent 

intercalation (discharge), the Li+ ions statistically distribute themselves over two sites until vanadium charge and 

lithium ordering are restored at a composition around Li1.25V2(PO4)3.  

Second cycle charge-discharge curves for the test cells at 0.2C rate in the range of 2.8–4.4 V are shown in 

Fig. 5. The samples show three charge-discharge plateaus, in this voltage range, corresponding to the 

intercalation/de-intercalation of two lithium ions per formula unit [14]. LVT10PC shows a specific discharge 

capacity of 120.6 mA h g-1 in the second cycle, achieving 91.6% of its theoretical capacity for two intercalated 

lithium ions (131.6 mA h g-1). In our previous study of the carbon coated unsubsituted material under identical 

conditions to those in the present work, a second cycle discharge capacity of 116.5 mA h g-1 was observed [28]. The 

most heavily substituted composition, LVT15PC shows a lower discharge capacity of 106.2 mA h g-1 (2nd cycle). 

The polarizations of the charge-discharge plateaus vary in the range 50-60 mV for LVT10PC and LVT15PC.  

The cycling performance of the studied compositions is summarised in Fig. 6. LVT10PC shows a discharge 

capacity of 121 mA h g-1 in the first cycle, which declines to 115.7 mA h g-1, up to the 60th cycle, corresponding to a 

4.4% loss. Compared to our previous studies of the unsubstituted system LVPC [28], LVT10PC shows an 

improvement in cycling performance (initial discharge capacity 118 mA h g-1 and a 6.2% loss over the first 60 cycles 

in LVPC). LVT15PC displays the lowest initial capacity of 106.7 mA h g-1 of the test samples. The differences in 

initial capacity may be associated with differences in the average particle sizes seen in the TEM. The cycling 

performance of LVT15PC shows a capacity fade of 7.9% up to 60 cycles. The coulombic efficiencies vary in the 

range 94-98% and 93-98% for LVT10PC and LVT15PC, respectively. 
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4. Conclusions  

Titanium can successfully be substituted for vanadium in Li3V2(PO3)3. The solid solution mechanism 

appears to involve reduction of V or Ti rather than formation of lithium vacancies, leaving the theoretical discharge 

capacity high. Compared to the carbon coated unsubstituted system, LVP, low levels of substitution show improved 

electrochemical performance, with higher initial discharge capacity and lower capacity fading. Further substitution 

has a negative impact on initial discharge capacity and capacity loss. This effect may be partly attributable to the 

larger average particle size and in more heavily substituted compositions. The smaller particle size provides a 

shorter distance for the lithium ion to diffuse into the particle core [2]. 
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Figure and Table Captions 

 
Fig. 1. Fitted diffraction profiles for (a) LVT10PC and (b) LVT15PC showing observed (+ symbols), calculated 

(line) and difference (lower) profiles. Reflection positions are indicated by markers (lower = primary phase, upper = 

secondary phase) 

 

Table 1. Crystal and refinement parameters for Li3V1.9Ti0.1(PO4)3-C and Li3V1.85Ti0.15(PO4)3-C. Estimated standard 
deviations are given in parentheses 
 

Fig. 2. Combined TG/DTA thermograms for (a) LVT10PC and (b) LVT15PC 

 

Fig. 3. TEM micrographs of (a, b) LVT10PC and (c, d) LVT15PC. Arrows indicate carbon. 

 

Fig. 4. Cyclic voltammagrams for LVT10PC and LVT15PC in the voltage range 2.8-4.4 V vs. Li/Li+ with step rate 

20 µV s-1 

 

Fig. 5 Second cycle charge-discharge profiles for LVT10PC and LVT15PC at 0.2C rate in the voltage range 2.8-4.4 

V vs. Li/Li+ 

 

Fig. 6. Discharge capacities of LVT10PC and LVT15PC recorded during cycling at 0.2C rate in voltage range 2.8–
4.4 V vs. Li/Li+  
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Figures and Tables 

 

 

Fig. 1. 
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Table 1 

Acronym LVT10PC LVT15PC 
Sample description Black powder Black powder 
R-factorsa Rwp = 0.0771, Rp = 0.0573 

Rex = 0.0597, RF2 = 0.1161 
χ2 = 1.696 

Rwp = 0.0706, Rp = 0.0522 
Rex = 0.0608, RF2 = 0.1700 
χ2 = 1.37 

No. of variables 51 51 
No of profile points used 3290 3290 
No of reflections 2707 2725 
   
(a) Primary Phase   
Empirical formula Li3O12P3Ti0.1V1.9 Li3O12P3Ti0.15V1.85 
Formula weight 407.31 g mol-1 407.16 g mol-1 
Crystal system Monoclinic Monoclinic 
Space group P21/n P21/n 
Unit cell dimension a = 8.5907(4) Å 

b = 8.6030(3) Å 
c = 12.0266(4) Å 
β = 90.390(3)° 

a = 8.5937(7) Å 
b = 8.5985(6) Å 
c = 12.0328(9) Å 
β = 90.450(5)° 

Volume 888.82(7) Å3 889.1(2) Å3 
Z 4 4 
Density (calculated) 3.042 Mg m-3 3.038 Mg m-3 
Weight fraction 0.98803(7) 0.98949(8) 
   
(b) Secondary phase   
Empirical formula VO VO 
Formula weight 66.94 g mol-1 66.94 g mol-1 
Crystal system Cubic Cubic 
Space group Fm-3m Fm-3m 
Unit cell dimension a = 4.1306(3) Å a = 4.1272(6) Å 
Volume 70.48(2) Å3 70.30(3) Å3 
Z 4 4 
Density (calculated) 6.309 Mg m-3 6.324 Mg m-3 
Weight fraction 0.0120(6) 0.0105(7) 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 

 
 


