89 research outputs found
Transepithelial Transport and Enzymatic Detoxification of Gluten in Gluten-Sensitive Rhesus Macaques
In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate.Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten.Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase.Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness
Central Nervous System Changes in Pediatric Heart Failure: A Volumetric Study
Autonomic dysfunction, mood disturbances, and memory deficits appear in pediatric and adult heart failure (HF). Brain areas controlling these functions show injury in adult HF patients, many of whom have comorbid cerebrovascular disease. We examined whether similar brain pathology develops in pediatric subjects without such comorbidities. In this study, high-resolution T1 brain magnetic resonance images were collected from seven severe HF subjects age (age 8–18 years [mean 13]; left ventricular shortening 9 to 19% [median 14%]) and seven age-matched healthy controls (age 8–18 years [mean 13]). After segmentation into gray matter (GM), white matter, and cerebrospinal fluid (CSF), regional volume loss between groups was determined by voxel-based morphometry. GM volume loss appeared on all HF scans, but ischemic changes and infarcts were absent. HF subjects showed greater CSF volume than controls (mean ± SD 0.30 ± 0.04 vs. 0.25 ± 0.04 l, P = 0.03), but total intracranial volume was identical (1.39 ± 0.11 vs. 1.39 ± 0.09 l, P = NS). Regional GM volume reduction appeared in the right and left posterior hippocampus, bilateral mid-insulae, and the superior medial frontal gyrus and mid-cingulate cortex of HF subjects (threshold P < 0.001). No volume-loss sites appeared in control brains. We conclude that pediatric HF patients show brain GM loss in areas similar to those of adult HF subjects. Substantial changes emerged in sites that regulate autonomic function as well as mood, personality and short-term memory. In the absence of thromboembolic disease and many comorbid conditions found in adult HF patients, pediatric HF patients show significant, focal GM volume loss, which may coincide with the multiple neurologic and psychological changes observed in patients with HF
Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses
JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants
JC polyomavirus (JCV) carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML) which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50-60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA), instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP) kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR\u200a=\u200a0.42, p\u200a=\u200a7
710(-15)) and controls (OR\u200a=\u200a0.53, p\u200a=\u200a2
710(-5)). In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR\u200a=\u200a1.63, p\u200a=\u200a0.006), and controls (OR\u200a=\u200a2.69, p\u200a=\u200a1
710(-5)). The German dataset confirmed these findings (OR\u200a=\u200a0.54, p\u200a=\u200a1
710(-4) and OR\u200a=\u200a1.58, p\u200a=\u200a0.03 respectively for these haplotypes). HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and lays the ground for risk stratification for PML and development of therapy and prevention
A "Candidate-Interactome" Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms
A “Candidate-Interactome” Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms
- …