588 research outputs found

    Experimental (n,γ\gamma) cross sections of the p-process nuclei 74^{74}Se and 84^{84}Sr

    Get PDF
    The nucleosynthesis of elements beyond iron is dominated by the s and r processes. However, a small amount of stable isotopes on the proton-rich side cannot be made by neutron capture and are thought to be produced by photodisintegration reactions on existing seed nuclei in the so-called "p process". So far most of the p-process reactions are not yet accessible by experimental techniques and have to be inferred from statistical Hauser-Feshbach model calculations. The parametrization of these models has to be constrained by measurements on stable proton-rich nuclei. A series of (n,γ\gamma) activation measurements, related by detailed balance to the respective photodisintegrations, were carried out at the Karlsruhe Van de Graaff accelerator using the 7^7Li(p,n)7^7Be source for simulating a Maxwellian neutron distribution of kT= 25 keV. First results for the experimental (n,γ\gamma) cross sections of the light p nuclei 74^{74}Se and 84^{84}Sr are reported. These experimental values were used for an extrapolation to the Maxwellian averaged cross section at 30 keV, 30_{30}, yielding 271±\pm15 mb for 74^{74}Se, and 300±\pm17 mb for the total capture cross section of 84^{84}Sr. The partial cross section to the isomer in 85^{85}Sr was found to be 190±\pm10 mb.Comment: 10 pages, 5 figure

    Proton capture cross section of Sr isotopes and their importance for nucleosynthesis of proton-rich nuclides

    Get PDF
    The (p,γ\gamma) cross sections of three stable Sr isotopes have been measured in the astrophysically relevant energy range. These reactions are important for the pp-process in stellar nucleosynthesis and, in addition, the reaction cross sections in the mass region up to 100 are also of importance concerning the rprp-process associated with explosive hydrogen and helium burning. It is speculated that this rprp-process could be responsible for a certain amount of pp-nuclei in this mass region. The (p,γ\gamma) cross sections of 84,86,87^{84,86,87}Sr isotopes were determined using an activation technique. The measurements were carried out at the 5 MV Van de Graaff accelerator of the ATOMKI, Debrecen. The resulting cross sections are compared with the predictions of statistical model calculations. The predictions are in good agreement with the experimental results for 84^{84}Sr(p,γ\gamma)85^{85}Y whereas the other two reactions exhibit differences that increase with mass number. The corresponding astrophysical reaction rates have also been computed.Comment: Phys. Rev. C in pres

    Highly site-specific H2 adsorption on vicinal Si(001) surfaces

    Full text link
    Experimental and theoretical results for the dissociative adsorption of H_2 on vicinal Si(001) surfaces are presented. Using optical second-harmonic generation, sticking probabilities at the step sites are found to exceed those on the terraces by up to six orders of magnitude. Density functional theory calculations indicate the presence of direct adsorption pathways for monohydride formation but with a dramatically lowered barrier for step adsorption due to an efficient rehybridization of dangling orbitals.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Lett. (1998). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Monte Carlo simulations of segregation in Pt-Re catalyst nanoparticles

    Get PDF
    We have investigated the segregation of Pt atoms to the surfaces of Pt-Re nanoparticles using the Monte Carlo method and Modified Embedded Atom Method potentials that we have developed for Pt-Re alloys. The Pt75Re25 nanoparticles (containing from 586 to 4033 atoms) are assumed to have disordered fcc configurations and cubo-octahedral shapes (terminated by {l_brace}111{r_brace} and {l_brace}100{r_brace} facets), while the Pt50Re50 and Pt25Re75 nanoparticles (containing from 587 to 4061 atoms) are assumed to have disordered hcp configurations and truncated hexagonal bipyramidal shapes (terminated by {l_brace}0001{r_brace} and {l_brace}101 {bar 1}{r_brace} facets). We predict that due to the segregation process the equilibrium Pt-Re nanoparticles would achieve a core-shell structure, with a Pt-enriched shell surrounding a Pt-deficient core. For fcc cubo-octahedral Pt75Re25 nanoparticles, the shells consist of almost 100 at. percent of Pt atoms. Even in the shells of hcp truncated hexagonal bipyramidal Pt50Re50 nanoparticles, the concentrations of Pt atoms exceed 85 at. percent (35 at. percent higher than the overall concentration of Pt atoms in these nanoparticles). Most prominently, all Pt atoms will segregate to the surfaces in the hcp truncated hexagonal bipyramidal Pt25Re75 nanoparticles containing less than 1000 atoms. We also find that the Pt atoms segregate preferentially to the vertex sites, less to edge sites, and least to facet sites on the shell of Pt-Re nanoparticles
    • …
    corecore