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We have investigated the segregation of Pt atoms to the surfaces of Pt-Re 

nanoparticles using the Monte Carlo method and Modified Embedded Atom Method 

potentials that we have developed for Pt-Re alloys. The Pt75Re25 nanoparticles 

(containing from 586 to 4033 atoms) are assumed to have disordered fcc configurations 

and cubo-octahedral shapes (terminated by {111} and {100} facets), while the Pt50Re50 

and Pt25Re75 nanoparticles (containing from 587 to 4061 atoms) are assumed to have 

disordered hcp configurations and truncated hexagonal bipyramidal shapes (terminated 

by {0001} and { 1110 } facets). We predict that due to the segregation process the 

equilibrium Pt-Re nanoparticles would achieve a core-shell structure, with a Pt-enriched 

shell surrounding a Pt-deficient core. For fcc cubo-octahedral Pt75Re25 nanoparticles, the 

shells consist of almost 100 at.% of Pt atoms. Even in the shells of hcp truncated 

hexagonal bipyramidal Pt50Re50 nanoparticles, the concentrations of Pt atoms exceed 85 

at. % (35 at.% higher than the overall concentration of Pt atoms in these nanoparticles). 

Most prominently, all Pt atoms will segregate to the surfaces in the hcp truncated 

hexagonal bipyramidal Pt25Re75 nanoparticles containing less than 1000 atoms. We also 

find that the Pt atoms segregate preferentially to the vertex sites, less to edge sites, and 

least to facet sites on the shell of Pt-Re nanoparticles. 
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I. INTRODUCTION 

Bimetallic mixtures of Platinum (Pt) and Rhenium (Re) on alumina have been 

widely used in petroleum refining for the production of aromatic hydrocarbons for 

automotive fuels [1]. Extensive experimental studies on this system (for example, Ref. 

[2,3]) have aimed at revealing the interaction properties between Pt and Re in catalyst 

nanoparticles (also called “clusters”). Early work on electro-oxidation of H2, CO and 

H2/CO mixtures with Pt-Re bulk alloy electrodes indicates that Pt-Re catalysts could also 

be applied as electro-catalysts in lower temperature polymer electrolyte fuel cells 

(PEFCs) [4]. Because the atomic-scale structure and arrangement of the two metals in the 

surfaces of bimetallic catalyst nanoparticles are important factors controlling their 

reactivity and selectivity [5,6], it is of great interest to characterize the structure and 

composition of the surfaces on Pt-Re catalyst nanoparticles. In particular, Pt is a precious 

active catalyst with a wide range of applications. For economic reasons, it is highly 

desirable to arrange the Pt atoms to the outer surfaces, so as to be in contact with 

reactants. In fact, for Pt-Ni and Pt-Co catalysts the segregation of Pt atoms to the surfaces 

of poly-crystals [7] and nanoparticles [8] has indeed enhanced their catalytic performance 

in oxygen reduction reactions. 

Some experimental techniques provide useful information about catalyst 

nanoparticles. For example, core-shell structures during nucleation and growth of Pt-Ru 

nanoparticles have been successfully probed using extended X-ray absorption fine 

structure (EXAFS) [9] and electrochemical nuclear magnetic resonance (EC-NMR) [10]. 

However, no similar studies for Pt-Re nanoparticles have been performed yet, possibly 

due to the difficulty in distinguishing Pt and Re using these techniques (the atomic 

number is 78 for Pt and 75 for Re). Besides experiments, atomic simulation has proven to 

be a powerful method to provide insight into the surface chemistry of bimetallic 

nanoparticles [11-15]. In this work, we used the Monte Carlo simulation method to 

investigate the surface segregation and the core-shell structures of Pt-Re nanoparticles. 

Compared to a previous theoretical study that only calculated segregation profiles of 

irregular shaped Pt-Re particles [14], our atomic-level work investigates the equilibrium 

shapes and structures of Pt-Re nanoparticles. 
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The Pt-Re nanoparticles that we are interested in contain up to several thousands 

of atoms. With such a large system size, accurate first principles methods are impractical 

for simulating surface segregation in these nanoparticles. Alternatively, the embedded-

atom method (EAM) [16,17], which is based on density-functional theory, renders a good 

description of many-body atomic interactions in metals. One challenge in this work is 

that the interatomic potentials should be applicable both to Pt, which favors the face-

centered cubic (fcc) bulk structure, and to Re, which favors the hexagonal closed packed 

(hcp) bulk structure. Baskes [18,19] solved this problem by adding directional bonding to 

EAM thus developing the modified embedded-atom method (MEAM) for metals with 

various lattices. Therefore, we employed MEAM potentials for Pt and Re in this work. 

We used first-principles calculation results for Pt-Re intermetallic compounds to 

determine the cross potential between Pt and Re. Our MEAM potentials (parameters 

given in Sec. III) should be universal and useful for simulating Pt-Re alloys in other 

applications. 

This paper is structured as follows: in Sec. II we describe the MEAM potentials 

and Monte Carlo method; in Sec. III we develop MEAM potentials for Pt-Re alloys and 

apply these potentials to assess surface segregation for extended low-index surfaces; in 

Sec. IV we report in detail surface segregation in fcc cubo-octahedral Pt75Re25 

nanoparticles, hcp truncated hexagonal bipyramidal Pt25Re75 nanoparticles, and hcp 

truncated hexagonal bipyramidal Pt50Re50 nanoparticles; finally, conclusions are drawn in 

Sec. VI.     

II. SIMULATION METHODS 

A. Modified embedded atom method (MEAM) 

 The detailed description of the MEAM formalism applied to cubic and hcp metals 

has been documented in the literature [18,19]. Hence, we only give a brief description 

below. 

 Within the MEAM, the total energy of a system is calculated as  
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In the above equation, iρ  is the background electron density at the center of atom i 

obtained by the superposition of electronic densities from its surrounding atoms. The first 

term is the embedding energy for atom i which is embedded into the electron density iρ , 

and the second term is the core-core pair repulsion between atom i and j separated by a 

distance Rij. 

 The embedding energy is given as follows: 
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Here, A is an adjustable parameter, Ec is the cohesive energy, and 0ρ is the density 

scaling parameter.  

The electron density iρ  is composed of the spherically symmetric partial electron 

density )0(
iρ  and the angular contributions )1(
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Here, ijijij RRx /αα = , and α
ijR  is the α component (α = x, y, or z) of the distance vector 

between atom i and j. )1/()(
)(

)( −−= eij
h rR
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j eR βρ  (h=0, 1, 2, and 3) represents the atomic 

electron densities contributed from atom j to atom i, β (h) are adjustable parameters, and re 

is the nearest-neighbor distance in the equilibrium reference structure. Note that Eq. (3d) 

is different from that in earlier work (for example, Ref. [18,19]). This new modification 

makes the partial electron densities orthogonal [20]. In this work, we use the following 
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scheme (see other schemes in Ref. [21]) to combine the partial electron densities and 

compute the background electron density: 
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where t(h) are adjustable parameters. 

 The pair potential between two atoms separated by a distance R is given by: 
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where Z is the number of nearest neighbors in the bulk reference structure (Z=12 for fcc 

and hcp metals). )(RE u  is the energy per atom of the reference structure as a function of 

nearest-neighbor distance R and is determined using the following universal equation of 

state of Rose et al. [22]. 
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Here, Ec,  re, Ω, and B are the cohesive energy, nearest-neighbor distance, atomic volume, 

and bulk modulus for the equilibrium reference structure, respectively. 

 )(0 Rρ in Eq. (5) is the background electron density for the reference structure. 

For fcc metals, 
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For hcp metals, 
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B. Screening procedure 

 The current version of the MEAM considers only nearest-neighbor interactions, 

therefore, we must provide a screening procedure to define which are the nearest 
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neighbors of an atom. We use the many-body screening function proposed by Baskes 

[21] using the elliptical construction.  

 The screening function Sik between atom i and atom k depends on all the other 

atoms between them, thus 
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where fc(x) is a function of the material dependent parameters Cmax and Cmin. The 

parameter C is determined using the following equation. 
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where 2)/( ikijij rrX =  and 2)/( ikjkjk rrX = . The rij, rjk, and rik are the distances between 

the corresponding atoms. 

 The smooth cutoff function fc(x) in Eq. (8b) assumes the following form. 

 If 1≥x ,       1)( =xf c                                                                                        (10a) 

 If 10 << x , [ ]24)1(1)( xxf c −−=                                                                     (10b) 

      If 0≤x ,       0)( =xf c                                                                                       (10c) 

 We multiply the atomic electron density and the pair potentials by the screening 

function Sik, hence Sik=1 represents unscreened interaction while Sik=0 represents a 

completely screened interaction.    

C. Monte Carlo method 

Monte Carlo (MC) simulation methods based on the Metropolis algorithm [23] 

have been successfully used in previous surface segregation calculations for various 

alloys (for example, Pt-Ni [24], Ni-Cu [25], and Al-Mg [26]). These MC methods are 

particularly advantageous in studying segregation phenomena in the equilibrium alloy 

structure, because they can circumvent slow physical dynamic processes (such as 
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diffusion) in the system and provide an averaged composition profile over a 

thermodynamic equilibrium ensemble [27]. 

 In our calculations, we used statistical mechanics with a canonical ensemble, 

where the total number of atoms of each element and the temperature are constants. In 

this approach, starting from some atomic configuration, the successive configurations are 

generated in proportion to the probabilities of a configuration occurring in the 

equilibrium ensemble. In each step, one of the following two configuration 

transformations is tried out with an equal probability: 

(1) A randomly selected atom is displaced from its original position in a random 

direction. The magnitude of the displacement is in the range of (0, rmax]. At a 

given temperature, the maximum displacement rmax is tuned so that the 

acceptance rate of new configurations is about 0.5 during the equilibrated part 

of the simulations.  

(2)  Two randomly selected atoms with different element types are exchanged. 

 The operation (1) accounts for the relaxation and vibration processes, and the operation 

(2) accounts for the inter-diffusion process in the model system. 

 According to the Boltzmann distribution, the probability (PXY) of the 

configuration transformation (from X to Y) is given by a Boltzmann factor for the change 

in energy (∆E=EY-EX).  
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Here, kB is the Boltzmann constant and T is the temperature. If PXY≥1 (decrease in 

energy), the new configuration is always retained, while if PXY<1 (increase in energy), 

the new configuration is accepted with the probability PXY.  

 After repeating the above procedures for multi-million MC steps, the physical 

quantities such as the composition profile are obtained by averaging over the resulting 

configurations. For example, we used the above Monte Carlo scheme to determine the 

lattice constants for disordered fcc Pt75Re25 and hcp Pt25Re75 bulk alloys. To this end, we 

carried out MC simulations for disordered fcc Pt75Re25 and hcp Pt25Re75 bulk alloys with 

various lattice parameters and determined the lattice constant that led to the zero average 
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pressure (strain) for a 3D periodic simulation cell at a given temperature. In this work, we 

simulated the disordered fcc Pt75Re25 bulk alloy using a cubic simulation cell containing 

500 atoms and the hcp Pt25Re75 bulk alloy using a hexagonal simulation cell containing 

512 atoms. The whole MC simulation typically takes 5 million steps, but we only average 

the pressure of simulation cells over the last 3 million steps to eliminate the influence of 

the original structure. For the fcc Pt75Re25 bulk alloy the equilibrium lattice constants are 

found to be a=3.902 Å at 600K and a=3.906 Å at 900 K. For the hcp Pt25Re75 bulk alloy 

the equilibrium lattice constants are a=2.761 Å, c=4.453 Å at 600K and a=2.766 Å, 

c=4.463 Å at 900 K. The calculated lattice constants are close to a=3.895 Å for the fcc 

Pt75Re25 bulk alloy and a=2.762 Å, c=4.408 Å for the hcp Pt25Re75 bulk alloy interpolated 

from experimental data at nearby temperature [28]. These lattice constants are used to 

initialize the atomic positions for the extended surface (Sec. III.B) and nanoparticle (Sec. 

IV) simulations. 

III. MEAM DESCRIPTION OF Pt-Re 

A. Development of the potentials 

 Similar to previous work [18,19], the MEAM potentials for fcc Pt and hcp Re 

were developed using empirical data for the cohesive energy, the lattice constants, the 

elastic constants, and the vacancy formation energy. These potentials yield a cohesive 

energy of a Pt atom in the fcc lattice that is 0.022 eV lower than in the hcp lattice 

(compared to the experimental difference of 0.03 eV [29]), and yield a cohesive energy of 

a Re atom in the hcp lattice that is 0.084 eV lower than in the fcc lattice (compared to the 

experimental difference of 0.11 eV [29]).   

To determine the cross potentials between Pt and Re, we chose Pt3Re, which has 

the L12 structure, as the reference structure. Hence, the Pt-Re pair potential is evaluated 

using the following expression [30]. 
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)(12 )0(
Re Ra
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The parameters for the Pt-Re MEAM potentials are given in Table I, and Table II gives 

the angular screening parameters for the potentials.  

 We fit the MEAM cross potentials between Pt and Re with first-principles 

calculation results of (1) the three elastic constants for Pt3Re (L12) and (2) the lattice 

parameters and cohesive energies for both Pt3Re (L12) and PtRe3 (L12). The cohesive 

energy for Pt3Re (L12) or PtRe3 (L12) is the energy of these compound crystals relative to 

the atomic energies of the fcc Pt and the hcp Re. To obtain the above quantum calculation 

results, we evaluated the energies using density-functional theory (DFT) with the local-

density approximation (LDA). We employed the PARATEC code [31]: it is a massively 

parallel package performing ab initio quantum-mechanical total energy calculations using 

pseudopotentials and a plane-wave basis set. In this work, we used the package FHI98PP 

[32] to generate the norm-conserving Troullier-Martins [33] type of pseudopotentials, 

employing common parametrization of the local-density approximation for exchange and 

correlation. In all calculations, we have used a 16x16x16 k-point grid for k-space 

integration and a kinetic energy cutoff of 60 Ry to expand the electronic wave-functions 

in the plane wave basis. The elastic constants are determined following the procedure 

given in Ref. [34].  

Table III compares the calculated properties for Pt3Re (L12) and PtRe3 (L12), 

showing a generally good agreement between the MEAM potentials and the ab initio 

method except for the cohesive energy of Pt3Re (L12). The MEAM predicts the cohesive 

energy of Pt3Re (L12) to be –0.100 eV/atom, while the ab initio method gives a value of 

0.126 eV/atom. We have tried to develop MEAM potentials to achieve a better agreement 

for the cohesive energy of Pt3Re (L12) between the two methods. However, those 

potentials do not lead to forming a solid solution for the Pt75Re25 alloy at high 

temperatures, contradicting the experimental Pt-Re phase diagram [35]. In addition, an x-

ray investigation for the Pt-Re alloys suggests the existence of a compound with 23 to 25 

at.% Re below 1600 °C [36]. Therefore, we developed the MEAM potentials to give the 

best agreement for the cohesive energy of PtRe3 (L12) with the ab initio calculations. 
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B. Segregation in extended surfaces 

 In this section we consider segregation phenomena at surfaces that are infinitely 

extended in two dimensions. Unlike for nanoparticles, segregation profiles in extended 

surfaces can currently be measured in experiments. These extended surfaces can then 

serve as references for the finite-size facets of nanoparticles. 

1. Thermodynamics considerations  

 For randomly disordered binary alloys, surface segregation (the enrichment of one 

component of the alloy in the surface region relative to bulk composition) can be 

predicted qualitatively, although not reliably, using the heat of solution of alloys, atom 

sizes of pure elements, and relative surface energies of pure elements. In the following, 

we discuss these three properties and their effect on surface segregation for the Pt-Re 

alloys described with MEAM. 

  (1) Heat of solution of alloys. The Pt and Re atoms form fcc solid solutions when 

the Re concentrations CRe < 40 at. % and form hcp solid solutions when CRe > 60 at. %. 

For these solid solutions, the heat of solution is negative. Hence, the majority component 

would be enriched in surfaces. For example, based on this argument the Pt atoms are 

predicted to segregate to the surfaces of fcc disordered Pt75Re25 alloys and Re atoms 

should enrich in the surfaces of hcp disordered Pt25Re75 alloys. 

 (2) Atom sizes of pure elements. When atom sizes of the two component elements 

are very different in binary alloys, one or the other element can decrease the atomic 

mismatch elastic energy by segregating from bulk to surface and it would thus be 

enriched on surfaces.  It is seen in Table IV from the MEAM calculations that pure Pt and 

pure Re have very similar lattice parameters (i.e. similar atom sizes) in both fcc and hcp 

crystals. As a result, the elastic energy change would be very small due to surface 

segregation. Thus, the atom size difference of the pure elements is not an appreciable 

driving force for surface segregation in Pt-Re alloys. 

 (3) Relative surface energies of pure elements. The component with a lower 

surface energy would segregate to the corresponding binary alloy surface. Table IV gives 

the calculated surface energies of the relaxed low-index fcc and hcp surfaces (shown in 
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Fig. 1 and Fig. 2) for Pt and Re using our MEAM potentials. For the surfaces of fcc Pt 

and hcp Re, the calculated surface energies using the MEAM potentials agree quite well 

with the ab initio calculations [37][density-functional theory (DFT) with the generalized 

gradient approximation (GGA)] and experiments [38, 39].  For both fcc and hcp phases, 

Pt has significantly lower surface energies than Re. Therefore, Pt atoms would segregate 

to surfaces in both fcc and hcp Pt-Re disordered alloys considering the relative surface 

energy difference of the two elements. 

2. Monte Carlo simulations 

 To quantitatively calculate segregation profiles at extended surfaces, we 

performed Monte Carlo simulations for extended slabs with two surfaces using the 

MEAM potentials. The slabs expose (111), (100) or (110) surfaces for the fcc lattice, and 

(0001), ( 1110 ), ( 0110 )A, or ( 0110 )B surfaces for the hcp lattice. For alloys like Pt-Re in 

which the two component elements have very close atom sizes, atomic relaxation would 

only weakly affect the calculated segregation profile. Since we here only wish to 

illustrate the relation between segregation of Pt atoms and atomic sites with various 

coordination numbers, we fixed the atomic positions in the MC simulations. To model 

extended surfaces, we used slab simulation cells in which periodic boundary conditions 

are only applied in the two directions parallel to the surface. The simulated slabs are 

about 30 Å thick. 

 In this work, we chose to study segregation on extended surfaces of Pt75Re25 

alloys (fcc structure) and Pt25Re75 alloys (hcp structure). The simulation cells assume the 

lattice constants determined for the bulk alloys at the same composition and temperature 

T=900 K (see details in Sec. II.C). The Pt and Re atoms were initially distributed 

randomly in the whole slab. For each extended surface, we carried out MC simulation for 

5 million steps at T=900 K. To eliminate the influence of the initial configurations, we 

discarded the first 2 million MC steps and sampled the composition profile every 1000 

steps in the last 3 million MC steps. To gauge the convergence of our simulations, we 

compared the calculated compositions for each layer averaged in the two intervals 

between 2.0-3.5 and 3.5-5.0 million MC steps: we found the difference between the two 

results to be less than 1 at.%. Because our extended surfaces are modeled as slabs of 
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finite thickness, the surface segregation alters the composition in the center of the slab; 

hence, to reestablish the bulk composition there, we have done a series of MC 

simulations for each extended surface with different overall compositions. We report in 

Table V and Table VI the segregation profiles from those simulations that lead to the 

desired bulk compositions (75 at.% Pt for fcc Pt75Re25 alloys and 25 at.% Pt for hcp 

Pt25Re75 alloys) in the center of the slabs. 

Our simulations show strong segregation of the Pt atoms to both fcc and hcp 

surfaces. Pt reaches its bulk concentration of fcc Pt75Re25 alloys in the second layer for 

the (111) surface, the third layer for (100), and the fourth layer for (110). For hcp 

Pt25Re75 alloys Pt reaches the bulk concentration in the fourth layer of (0001) and the 

seventh layer of the other three surfaces [( 1110 ), ( 0110 )A, and ( 0110 )B]. In the 

outermost layer of the three fcc surfaces of Pt75Re25 alloys, the concentration of Pt atoms 

can achieve 100 at. %. Thus, a pure Pt “skin” could be formed on these surfaces. Surface 

segregation phenomena are more prominent in the hcp surfaces of Pt25Re75 alloys: the 

concentration difference between the outermost layer and the bulk is at least 66 at.%. On 

( 1110 ), ( 0110 )A, and ( 0110 )B surfaces, a pure Pt “skin” can also be formed. We 

believe that the strong surface segregation for Pt-Re alloys is due to the large surface 

energy difference (listed in Table V and Table VI) between the two components. 

Moreover, our results indicate that the degree of Pt segregation to various surfaces 

varies, especially to the second layer of those surfaces. Taking the example of the fcc 

Pt75Re25 alloy surfaces, we show in Table V that the Pt atoms segregate strongly to the 

second layer of (110), segregate slightly to the second layer of (100), and do not 

segregate to the second layer of (111). It is also seen in Table V that the surface energy 

differences between pure Pt and Re for various surfaces could not account for the degree 

of surface segregation. In fact, the number of nearest neighbors (also called coordination 

number) of atoms on surfaces correlates well with this trend of surface segregation. The 

atoms in the outermost layer of (110) have only 7 nearest neighbors, while the 

coordination numbers are 8 for atoms in the outermost layer of (100) and 9 for atoms in 

the outermost layer of (111). Hence, it appears that Pt atoms segregate preferably to the 

more “open” surfaces, where surface atoms have fewer nearest neighbors. The surface 
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segregation results in Table VI for hcp Pt25Re75 alloys also support the above correlation 

between the atomic coordination number and the degree of segregation of Pt atoms. In 

the outermost layer of (0001), ( 1110 ), ( 0110 )A, and ( 0110 )B, the atomic coordination 

numbers are 9, 8, 8 and 6, respectively. As a result, the Pt atoms segregate more to the 

more “open” ( 1110 ), ( 0110 )A, and ( 0110 )B surfaces than to the (0001) surfaces. In the 

second layer of (0001), ( 1110 ), ( 0110 )A, and ( 0110 )B, the atomic coordination numbers 

are 12, 9, 10 and 10, respectively. Correspondingly, the Pt atoms segregate strongly to the 

second layer of  ( 1110 ), less strongly to the second layer of  ( 0110 )A, and ( 0110 )B, but 

do not segregate to the second layer of (0001). Therefore, we conclude that for Pt-Re 

alloys the Pt atoms would preferentially segregate to atomic positions with fewer nearest 

neighbors. Also, it is worth pointing out that the surface energy difference of pure Pt and 

Re is only a qualitative indicator of which element segregates to surfaces but is not 

quantitatively related to the magnitude of segregation.      

IV. SEGREGATION IN Pt-Re NANOPARTICLES 

A. Overview 

 At a given temperature, segregation profiles for extended surfaces are determined 

by the composition of alloys. In contrast, segregation in bimetallic nanoparticles is 

determined by both the composition and the size of the nanoparticle. In the case that one 

type of atoms in bimetallic nanoparticles segregates strongly to the surface, a core-shell 

structure is formed. We here start by providing a very simple geometric picture of such a 

core-shell structure in nanoparticles, governed purely by the surface-to-volume-ratio and 

the overall composition: this will then serve as a reference when we add the atomic 

interactions for Pt-Re nanoparticles through MC simulations. Let’s assume an infinite 

tendency of segregation of atoms (thus, one type of atoms will segregate to the surface if 

a surface site is available). Then we can derive the following equations governing the 

composition in the core (denoted Cc) and shell (denoted Cs) as a function of overall 

composition and size (represented by dispersion) of the nanoparticles. In these equations, 

C stands for overall composition in atomic fraction of the surface-segregating element 

and D stands for dispersion that is the ratio of the number of surface atoms over the 
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number of all atoms. The dispersion D is roughly proportional to N-1/3, where N is the 

number of atoms in the nanoparticle. 

 When C>D, there are more surface-segregating atoms than surface positions in 

the nanoparticles. Hence, a pure shell of the surface-segregating element is formed, with 

a mixed core: 

 1=sC                                                                                                                 (13a) 
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DC
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−=

1
                                                                                                    (13b) 

 When C<D, there are more surface positions than surface-segregating atoms in 

the nanoparticles. Hence, a pure core of the non-surface-segregating element is formed, 

with a mixed shell: 

 
D
C

C s =                                                                                                              (14a) 

 0=cC                                                                                                                 (14b) 

 Note that when C=D, Cs=1 and Cc=0: the shell and core are both pure. 

Figure 3 plots this geometric argument schematically as a simple phase diagram 

of core-shell structures, showing both composition and dispersion governing equilibrium 

configurations of bimetallic nanoparticles. This plot indicates: (1) for a fixed composition 

C, nanoparticles can change from pure-shell configurations to pure-core configurations 

with increasing dispersion D (i.e. decreasing size); and (2) for a given dispersion D (i.e. 

particle size), nanoparticles can change from pure-shell configurations to pure-core 

configurations with decreasing composition C.   

We now address nanoparticles composed of Pt and Re. Pt atoms will presumably 

segregate strongly to surfaces of Pt-Re nanoparticles based on our results in Sec. III.B.2 

for extended surfaces. However, the segregation tendency of Pt atoms to surfaces is not 

infinitely large at non-zero temperatures. It is anticipated that Eq. (13) or Eq. (14) are 

applicable to Pt-Re nanoparticles only when C is much smaller or larger than D, 

respectively. When C is comparable to D, the core-shell structure will deviate from either 

Eq. (13) or Eq. (14): neither shell nor core will be pure. Therefore, in our MC studies, we 

investigated segregation in Pt-Re nanoparticles with four different sizes (dispersion 
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ranges from 0.25 to 0.50) and with three compositions: Pt75Re25 (C>>D regime), Pt25Re75 

(C<<D regime), and Pt50Re50 (C≈D regime).  

For each nanoparticle, we performed MC simulations allowing both atomic 

displacement and exchange of element types for 20 million MC steps at T=600 K. The 

Pt-Re nanoparticles initially had the lattice constants determined for the bulk alloys at the 

same composition and temperature 600 K (see details in Sec. II.C) with randomly 

distributed Pt and Re atoms. During the MC simulations, both the lattice constants and 

the distribution of Pt and Re atoms in the nanoparticles change. The reported 

concentrations of Pt atoms in the remainder of this section are the averaged values 

sampled every 10000 MC steps in the last 10 million MC steps. 

B. Segregation in Pt75Re25 and Pt25Re75 nanoparticles 

Referring to the Pt-Re phase diagram [35], we assumed the fcc cubo-octahedral 

shape (terminated by {111} and {100} facets, shown in Fig. 4) for Pt75Re25 nanoparticles 

and the hcp truncated hexagonal bipyramidal shape (terminated by {0001} and { 1110 } 

facets, shown in Fig. 5) for Pt25Re75 nanoparticles. These two shapes are believed to be 

the equilibrium shapes for fcc and hcp nanoparticles from the macroscopic view of single 

crystal surface energy [40]. To study the size effect on segregation in nanoparticles, we 

chose sequences of “magic” numbers of atoms (i.e., nanoparticles containing complete 

shells of atoms): 586, 1289, 2406, and 4033 for fcc cubo-octahedral nanoparticles, and 

587, 967, 2157, and 4061 for hcp truncated bipyramidal nanoparticles. The diameter of 

these nanoparticles ranges from 2.5 to 5 nm. In our MC simulations at T=600 K, we 

observed no tendency for a qualitative change in the nanoparticle shape away from cubo-

octahedron or away from truncated hexagonal bipyramid. However, we notice that both 

the fcc Pt75Re25 nanoparticles and the hcp Pt25Re75 nanoparticles are more rounded after 

relaxation. This requires the vertex atoms to move inward and/or the central facet atoms 

to move outward.  Some more of the important results are presented below.  

1. Core-shell structures 

 Inside fcc and hcp nanoparticles, each atom has twelve nearest neighbors (nn) just 

like in bulk crystals. In contrast, atoms on the outermost layer of nanoparticles have an 
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incomplete set of nearest neighbors. Following the approach proposed in Ref. [40] based 

on the number and arrangement of nearest neighboring atoms, we can distinguish atoms 

in the surfaces or in the core of nanoparticles, and further distinguish various surface 

sites: facet, edge, and vertex (see the figure captions of Fig. 4 and 5). In this work, we 

define the nearest neighbors for each atom in the nanoparticles as those atoms with a 

screening factor S (Eq. 8(a)) larger than 0.5 when Cmax=2.8 and Cmin=0.0. We make 

this choice because for each atom in bulk fcc and hcp Pt-Re alloys, the screening factor 

would be 1.0 between this atom and its 12 nearest neighbors and 0.2 between this atom 

and its second nearest neighbors if we choose the C’s above. Our definition leads to 

results consistent with direct visualizations. 

 Figure 6 shows clearly the equilibrium core-shell structures of Pt-Re nanoparticles 

using cross-sections that expose the centers of the nanoparticles. In both fcc Pt75Re25 

nanoparticles and hcp Pt25Re75 nanoparticles, the Pt is enriched in the shell region and 

correspondingly depleted in the core region. The core-shell difference of concentration of 

Pt atoms can be as high as 67.2 at.% for the hcp Pt25Re75 nanoparticle containing 2157 

atoms. Tables VII and VIII give the calculated concentrations of Pt atoms in the shell and 

core of the nanoparticles. Table VII shows that the shell of fcc Pt75Re25 nanoparticles 

with number of atoms ranging from 586 to 4033 is composed of almost 100 at.% Pt 

atoms, agreeing excellently with the prediction from Eq. (13). The agreement between 

simulations and Eq. (13) is best for the nanoparticle with 4033 atoms, for which C=0.75 

is much larger than D=0.274. It is noticeable in Table VIII that the Pt atoms would be 

almost absent in the core of the hcp Pt25Re75 nanoparticles containing fewer than 1000 

atoms, although Pt and Re form solid solutions in the bulk materials at the same 

composition. This agrees with Eq. (14) since C=0.25 is much smaller than D=0.460 and 

D=0.399. As expected, a much larger discrepancy between simulations and Eq. (13) and 

Eq. (14) is observed for the nanoparticle containing 4061 atoms, for which D=0.259 is 

approximately equal to C=0.25.  

2. {100}-facet reconstruction in fcc Pt75Re25 nanoparticles 

We found that a reconstruction process often occurs after many simulation steps 

in {100} facets of fcc Pt75Re25 nanoparticles: Figure 7 displays this process. Figure 7(a) 
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shows the initial configuration of the fcc Pt75Re25 nanoparticle containing 586 atoms. At 

this time, the Pt and Re atoms are distributed randomly and the 4x4 atoms in the (100) 

facet (marked with dashed lines) are in their bulk positions forming a square. Figure 7(b) 

shows the same nanoparticle after 5 million MC steps. It can be seen that the Pt atoms 

have segregated to the surface and form a nearly pure Pt “skin” covering this 

nanoparticle. Moreover, some of the 4x4 atoms in the (100) facet have moved 

significantly away from their original positions. It is shown in Fig. 7(c) that some atoms 

from inside the nanoparticle have moved toward the (100) facet and in Fig. 7(d) that 

seven atoms (where there were four before) eventually arrange themselves into a denser 

hexagonal configuration in the top layer of the (100) facet, leaving the external edge of 

the 4x4 array intact near bulk-like positions, but distorted away from a square shape 

toward a diamond shape. 

 To our knowledge, no previous studies have reported this phenomenon in 

nanoparticles. However, the reconstruction of {100} facets from square to hexagonal 

lattice in the Pt enriched shell of nanoparticles is reasonable and anticipated. Indeed, it is 

well known that (100) surfaces of pure elemental Pt undergo a similar surface 

reconstruction to a hexagonal outermost layer [41,42]. In addition, low energy electron 

diffraction (LEED) shows that the top layer of the (100) surface of Pt3Co alloys can 

reconstruct from a square lattice to a hexagonal lattice if the Pt atoms strongly segregate 

to the top layer of the surface [43]. Therefore, we conclude from our simulations that the 

top layer of the {100} facets in fcc cubo-octahedral Pt75Re25 nanoparticles can 

reconstruct from a square lattice to a denser hexagonal lattice and that the extra atoms 

needed in this process come from the core of the nanoparticles (not the surrounding 

edges and vertices).   

3. Preferential segregation in hcp Pt25Re75 nanoparticles 

For hcp Pt25Re75 nanoparticles, our results in Table IX indicate that the 

segregation of Pt atoms to the outermost layer of nanoparticles is site dependent. The 

general trend is that Pt atoms preferentially segregate to the surface sites with a lower 

coordination number, i.e., Pt atoms would segregate most to vertices, less to edges, and 

least to facets of Pt-Re nanoparticles. This observation agrees with our finding in 
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Sec.III.B.2 for segregation to extended surfaces, namely, that Pt atoms would 

preferentially segregate to atomic positions with fewer nearest neighbors. These results 

are also consistent with the previous work [14] for irregularly shaped Pt-Re nanoparticles 

using Monte Carlo simulations combined with a “macroscopic atom” model.  

C. Segregation in Pt50Re50 nanoparticles 

From the Pt-Re phase diagram [35], it is known that the fcc (Re in Pt) solid 

solution and hcp (Pt in Re) solid solution co-exist in bulk Pt50Re50 alloys at low 

temperatures (<2737 K). Hence, it is not clear a priori which lattice structure (fcc or hcp) 

the Pt50Re50 nanoparticle would assume at 600K. An experimental study in a similar case 

of Pt-Ru nanoparticles (Ru is a hcp metal) shows that both fcc and hcp nanoparticles 

could be found at this composition after co-reduction at 673 K [44].  

The atomic cohesive energy, which is the total potential energy (U) divided by the 

number of atoms (N) indicates the relative stability of nanoparticles with different lattices 

and shapes. Figure 8 shows our calculated atomic cohesive energy as a function of the 

number of atoms for fcc cubo-octahedral and hcp truncated hexagonal bipyramidal 

Pt50Re50 nanoparticles. For all these nanoparticles (distinguished by lattice and shape) in 

our study, an approximately linear relation between U/N and N-1/3 is observed. 

 3
1

−
⋅+≈ NkE

N
U

B                                                                                                (13)                    

In the above equation, EB (<0) is the bulk cohesive energy. The term k⋅N-1/3 represents 

the contribution to the cohesive energy from surface atoms, whose number is 

approximately proportional to N2/3. A similar relation between atomic cohesive energy 

and number of atoms was found previously for pure metal nanoparticles [45,46].  

The upper two lines in Fig. 8 for Pt50Re50 nanoparticles, in which Pt and Re atoms 

are distributed randomly, were obtained by a linear fit to the average atomic cohesive 

energy for 20 distinct configurations. The lower two lines in Fig. 8 for Pt50Re50 

nanoparticles, in which Pt atoms segregate to the surfaces, were linear fits to the average 

atomic cohesive energy from MC simulations (T=600K, without atom displacements, 

total length of 10 million MC steps and data analysis for the last 8 million MC steps). In 

both cases assuming the bulk crystal structure, we used a=3.902 Å to determine the initial 
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atom positions in fcc Pt50Re50 nanoparticles, and a=2.761 Å, c=4.453 Å in hcp Pt50Re50 

nanoparticles. 

For Pt50Re50 nanoparticles (Pt and Re atoms are distributed randomly) containing 

the same number of atoms (N), our results in Fig. 8 indicate that the atomic cohesive 

energy for atoms in fcc and hcp nanoparticles do not differ by much. Compared to the 

corresponding hcp nanoparticle, the fcc nanoparticle has a lower energy when the particle 

size is small (for example, 0.007 eV lower when N=500), a higher energy when the 

particle size is large (for example, 0.007 eV higher when N=5000), and an equal energy 

when the number of atoms is about N=3273. In contrast, the atomic cohesive energy for 

atoms in the hcp Pt50Re50 nanoparticle is always about 0.02 eV lower than in the 

corresponding fcc nanoparticle after the Pt atoms segregate to the surface. This implies 

that the hcp truncated hexagonal bipyramid would be the equilibrium lattice and shape of 

Pt50Re50 nanoparticles considering surface segregation phenomena. This is reasonable 

because a hcp Re-enriched core would be preferred after almost all Pt atoms segregate to 

the surface. Experimental studies [47] confirm that the Pt atoms can form a layer, sharing 

the hcp lattice, on top of the Re crystal. It is noticed that the energy difference 0.02 

eV/atom between fcc and hcp nanoparticles is comparable to kBT =0.05 eV/atom at 

600K. Therefore, we anticipate that both fcc and hcp Pt50Re50 nanoparticles may coexist 

at 600 K. 

Starting from the hcp truncated hexagonal bipyramidal Pt50Re50 nanoparticles with 

a random distribution of Pt and Re atoms, we carried out Monte Carlo simulations with 

atomic relaxations up to 20 million MC steps at 600 K. Table X reports the concentration 

of Pt atoms in the shell and core of the equilibrium hcp Pt50Re50 nanoparticles. Compared 

to the results in Table VIII for the Pt25Re75 nanoparticle with the same shape, the 

concentration of Pt atoms in the shell of the Pt50Re50 nanoparticle containing 587 atoms 

increases by 31.2 at.% (higher than the overall concentration difference 25 at.%). In 

contrast, the increase of the Pt concentration in the shell of the other three larger Pt50Re50 

nanoparticles is less than 25 at.%. Nonetheless, a rather higher concentration of Pt atoms 

(over 85 at.%) on the surface of hcp Pt50Re50 nanoparticles can be achieved due to 

segregation. Not surprisingly, neither Eq. (13) nor Eq. (14) is applicable for accurately 
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predicting core-shell structures of Pt50Re50 nanoparticles because C=0.50 is comparable to 

D ranging from 0.260 to 0.451. 

V. CONCLUSIONS 

In this work, we investigated the segregation of Pt atoms to surfaces of bimetallic 

Pt-Re nanoparticles. To this end, we first developed MEAM potentials for the Pt-Re 

alloys based on experimental and first principles calculation results. Our MEAM 

potentials can reproduce most of the available results for the elemental Pt, elemental Re 

and intermetallic Pt-Re compounds. More importantly, these potentials lead to correct 

surface energies for Pt and Re. The surface energy emerges as a major factor controlling 

the segregation of Pt atoms in Pt-Re bulk alloy surfaces and nanoparticles. 

   From the study of Pt-Re surfaces [(111), (100), and (110) for fcc Pt75Re25 alloys 

and (0001), ( 1110 ), ( 0110 )A, and ( 0110 )B for hcp Pt25Re75 alloys], we find that the Pt 

atoms always segregate to the surfaces. Furthermore, we find that the Pt atoms would 

preferentially segregate to those sites that have lower coordination number.  We also 

confirmed this conclusion in the simulations for Pt-Re nanoparticles. These results imply 

that the concentrations of Pt atoms at various sites in Pt-Re nanoparticles are predicted to 

increase with lowering coordination number in the order from particle core to facets, 

edges, and vertices.  

We assume the fcc cubo-octahedron and hcp truncated hexagonal bipyramid to be 

the equilibrium shapes for Pt75Re25 and Pt25Re25 nanoparticles, respectively. One 

interesting observation is that the {100} facets in fcc cubo-octahedral Pt75Re25 

nanoparticles are predicted to reconstruct from the bulk terminated square lattice to a 

hexagonal arrangement of atoms after a high concentration of Pt atoms is achieved due to 

segregation. The extra atoms for the hexagonal lattice come from the core region, not 

from the surrounding edges or vertices. Furthermore, we investigated the equilibrium 

shapes and core-shell structures for Pt50Re50 nanoparticles. We find that both the fcc 

cubo-octahedral and hcp truncated hexagonal bipyramidal Pt50Re50 nanoparticles are 

thermodynamically stable, although the segregation of the Pt atoms to their surface 

makes the hcp truncated hexagonal bipyramidal nanoparticles energetically more 

favorable. 
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Our results indicate that at T=600 K the equilibrium Pt-Re nanoparticles adopt a 

core-shell structure: the shell contains a higher concentration of Pt atoms than the core. 

For fcc cubo-octahedral Pt75Re25 nanoparticles, the shells consist of almost 100 at.% Pt 

atoms due to segregation, achieving a nearly pure Pt-shell structure. In the shells of hcp 

truncated hexagonal bipyramidal Pt50Re50 nanoparticles, the concentration of Pt atoms 

exceeds 85 at. %. All Pt atoms are predicted to segregate to the surfaces (mostly to 

vertices, less to edges, and least to facets) of the hcp truncated hexagonal bipyramidal 

Pt25Re75 nanoparticles containing less than 1000 atoms, leading to a pure Re-core 

structure, as qualitatively predicted with Eq. (14). The core-shell structure of Pt-Re 

nanoparticles revealed in this work should be useful for the future processing, 

improvement, and design of Pt-Re catalyst nanoparticles.   
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TABLE I. Parameters for the MEAM potentials of Pt, Re and Pt-Re. The parameters are: 

the cohesive energy Ec (eV), the equilibrium nearest-neighbor distance re (Å), the 

exponential decay factor for the universal energy function α, the scaling factor for the 

embedding energy A, the four exponential decay factors for the atomic densities β (i), the 

four weighting factors for the atomic densities t(i), and the density scaling factor ρ0. 

 Ec re α A β (0) β (1) β (2) β (3) t(0) t(1) t(2) t(3) ρ0 

Re 8.09 2.75 6.11 1.09 1.65 1.00 3.00 2.00 1.00 7.00 5.00 -8.00 0.40 

Pt 5.77 2.77 6.44 1.04 4.673 2.20 6.00 2.20 1.00 4.70 -1.38 3.29 0.44 

PtRe 6.45 2.747 6.71 - - - - - - - - - - 

TABLE II. Angular screening parameters for the MEAM potentials. 

 Pt-Pt-Pt Pt-Re-Pt Re-Pt-Pt Re-Re-Pt Re-Pt-Re Re-Re-Re 

Cmax 2.8 2.8 2.8 2.8 2.8 2.8 

Cmin 2.0 2.0 2.0 2.0 2.0 2.0 

TABLE III. Comparison of the calculated properties of bulk Pt3Re (L12) and PtRe3 (L12) 

using the MEAM potentials and the ab initio (LDA-DFT) method.  

 MEAM LDA-DFT 

Properties of Pt3Re (L12)   

Lattice constant (Å) 3.885 3.885 

Cohesive energy (eV/atom) -0.100 0.126 

Elastic constant B (GPa) 352.5 351.1 

Elastic constant (C11-C22)/2 (GPa) 82.0 83.4 

Elastic constant C44 (GPa) 153.2 174.6 

Properties of PtRe3 (L12)   

Lattice constant (Å) 3.874 3.848 

Cohesive energy (eV) -0.067 -0.075 
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TABLE IV. Energies of the relaxed extended low-index fcc and hcp surfaces (Fig. 1 and 

Fig. 2) for pure Pt and pure Re calculated using the MEAM potentials. For comparison, 

we include the ab initio and experimental results for fcc Pt and hcp Re. The equilibrium 

lattice parameters for Pt and Re in different lattices are given in the second column.  

 Lattice  
 

Surface MEAM (mJ/m2) ab initio a 

(mJ/m2) 
Experiment 

(mJ/m2)  

(0001) 3955 4214 
( 0110 )A 3809 4628 

( 0110 )B 4343 5985 

Re  hcp 

a=2.764 Å 

c/a=1.608 
( 1110 ) 4156  

3626 b, 3600 c  

(0001) 1577  
( 0110 )A 1756  

( 0110 )B 2183  

Pt hcp 

a=2.764 Å 

c/a=1.649 
( 1110 ) 1887  

 

(111) 3786  
(100) 4174  

Re fcc 

a=3.893 Å 
(110) 3678  

 

(111) 1651 2299 
(100) 2155 2734 

Pt fcc 

a=3.920 Å 
(110) 1963 2819 

2489 b, 2475 c 

 
a Reference [37]. 
b Reference [38]. 
c Reference [39]. 
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TABLE V. Calculated segregation profiles in extended surfaces for disordered fcc 

Pt75Re25 alloys at 900K. Ci (i=1,2,3) is the Pt concentration in layer i and in atomic 

percent.  Also listed in the table are the surface energy differences ( Re
S

Pt
S EE − ) of pure Pt 

and Re calculated using the MEAM potentials.  

Surface C1 C2 C3 Re
S

Pt
S EE − (mJ/m2) 

(111) 100 74 75 -2135 

(100) 100 79 74 -2019 

(110) 100 91 64 -1715 

TABLE VI. Calculated segregation profiles in extended surfaces for disordered hcp 

Pt25Re75 alloys at 900K. Ci (i=1,2,3) is the Pt concentration in layer i and in atomic 

percent.  Also listed in the table are the surface energy differences ( Re
S

Pt
S EE − ) of pure Pt 

and Re calculated using the MEAM potentials.  

Surface C1 C2 C3 Re
S

Pt
S EE − (mJ/m2) 

(0001) 93 15 29 -2378 

( 1110 )  99 89 16 -2269 

( 0110 )A 100 50 14 -2053 

( 0110 )B 100 53 14 -2160 
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TABLE VII. Dispersion (D) and concentrations of Pt atoms in atomic percent in the 

shell (denoted Cs) and core (denoted Cc) of fcc cubo-octahedral Pt75Re25 nanoparticles 

containing different number of atoms (N). Also included is the calculated Cc using Eq. 

13(b). 

N D Cs Cc Cc (Eq. 13(b)) 

586 0.483 96.7 54.9 51.6 

1289 0.388 97.7 60.6 59.2 

2406 0.325 98.8 63.6 63.0 

4033 0.274 99.1 65.9 65.6 

TABLE VIII. Dispersion (D) and concentrations of Pt atoms in atomic percent in the 

shell (denoted Cs) and core (denoted Cc) of hcp truncated bipyramidal Pt25Re75 

nanoparticles containing different number of atoms (N). Also included is the calculated 

Cs using Eq. 14(a). 

N D Cs Cc Cs (Eq. 14(a)) 

587 0.460 54.3 0.2 54.3 

967 0.399 62.0 0.5 62.7 

2157 0.313 71.2 4.0 79.9 

4061 0.259 72.9 8.3 96.5 
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TABLE IX. Concentrations of Pt atoms (in atomic percent) at various atomic sites 

[distinguished by the number and arrangement of nearest neighbors (nn)] in the outermost 

surface of hcp truncated bipyramidal Pt25Re75 nanoparticles for a series of particle sizes, 

with N = number of atoms. Figure 5 shows the positions of various atomic sites 

(numbered in the same sequence) in nanoparticles.  

Atomic sites N=587 N=967 N=2157 N=4061 

1: vertex (5nn) 79 98 100 100 

2: vertex (6nn) 97 100 100 100 

3: { 1110 }/{ 1110 } edges (6nn) 82 85 93 95 

4: { 1110 }/{ 1110 } edges (7nn) 69 85 92 95 

5: { 1110 }/{0001} edges (7nn)  63 55 94 95 

6: { 1110 }/{0001} edges (7nn)  82 82 99 99 

7: { 1110 }/{ 1110 } edges (8nn) 60 67 86 91 

8: { 1110 } facets (8nn) 46 63 77 79 

9: {0001} facets (9nn) 56 66 66 69 

10: { 1110 } facets (9nn) 35 40 50 55 

TABLE X. Dispersion (D) and concentrations of Pt atoms in atomic percent in the shell 

(denoted Cs) and core (denoted Cc) of hcp truncated bipyramidal Pt50Re50 nanoparticles 

containing different number of atoms (N). 

N D Cs Cc 

587 0.451 85.5 21.0 

967 0.395 84.8 27.4 

2157 0.315 86.0 33.5 

4061 0.260 86.5 37.2 
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Figure Captions: 

FIG. 1. Side views (upper panels) and top views (lower panels) of the extended low-index 

fcc surfaces: (a) (111), (b) (100), and (c) (110). For illustration, the atoms in the 

second layer of these surfaces are drawn in gray. The atoms in the outermost layer 

of (111) surfaces have 9 nearest neighbors; the atoms in the outermost layer of 

(100) surfaces have 8 nearest neighbors; and the atoms in the outermost layer of 

(110) surfaces have 7 nearest neighbors. All the other atoms have the complete set 

of 12 nearest neighbors, as in bulk fcc crystals. 

FIG. 2. Side views (upper panels) and top views (lower panels) of the extended low-index 

hcp surfaces: (a) (0001), (b) ( 1110 ), (c) ( 0110 )A and (d) ( 0110 )B. For 

illustration, the atoms in the second layer of these surfaces are drawn in gray. The 

atoms in the outermost layer of (0001) surfaces have 9 nearest neighbors (nn); the 

atoms in the outermost and second layers of ( 1110 ) surfaces have 8 nn and 9 nn, 

respectively; the atoms in the outermost and second layers of ( 0110 )A surfaces 

have 8nn and 10nn, respectively; and the atoms in the outermost and second 

layers of ( 0110 )B surfaces have 6nn and 10nn, respectively. All the other atoms 

have the complete set of 12 nearest neighbors, as in bulk hcp crystals. 

FIG. 3. A simple phase diagram of bimetallic nanoparticle core-shell structure with 

composition C and dispersion D. In the insets, the white circles stand for atoms of 

the segregating element and the gray background represents the atoms of the other 

element.     

FIG. 4.  A fcc cubo-octahedral nanoparticle. The numbers indicate the surface sites on the 

outermost layer of the particles. The surface atoms at different surface sites have 

different numbers of nearest neighbors (nn): atom 1:  vertex (6nn); atom 2: 

{111)/{111} edge (7nn); atom 3: {111}/{110} edge (7nn); atom 4: {100} facet 

(8nn); and atom 5: {111} facet (9nn). 

FIG. 5. A hcp truncated hexagonal bipyramidal nanoparticle. The numbers indicate the 

surface sites on the outermost layer of the particles. The surface atoms at different 

surface sites have different numbers of nearest neighbors (nn): atom 1: vertex 
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(5nn); atom 2: vertex (6nn); atom 3: { 1110 }/{ 1110 } edge (6nn); atom 4: 

{ 1110 }/{ 1110 } edge (7nn); atom 5: { 1110 }/{0001} edge (7nn); atom 6: 

{ 1110 }/{0001} edge (7nn); atom 7: { 1110 }/{ 1110 } edge (8nn); atom 8: 

{ 1110 } facet (8nn); atom 9: {0001} facet (9nn); and atom 10: { 1110 } facet 

(9nn). Note: Although atoms 5 and 6 are in the { 1110 }/{0001} edges and both 

have seven nearest neighbors, they are distinguishable by the arrangement of their 

neighbors. Atom 5 has five nearest neighbors on the surface (two neighbors 

buried inside the particle), while atom 6 has six nearest neighbors on the surface 

(only one neighbor buried inside the particle). 

FIG 6. Cross-sectional views of the core-shell structure of Pt-Re nanoparticles simulated 

at T=600 K. Thes panels show (a) a [001] cross-section of the fcc cubo-octahedral 

Pt75Re25 nanoparticle (containing 586 atoms), and (b) a [ 0211 ] cross-section of 

the hcp truncated bipyramidal Pt25Re75 nanoparticle (containing 587 atoms). The 

open circles represent the Pt atoms and the gray circles stand for the Re atoms. 

FIG. 7. A series of snapshots of the fcc cubo-octahedral Pt75Re25 nanoparticle (containing 

586 atoms) simulated at T=600 K. (a) the initial nanoparticle in which the Pt and 

Re atoms were distributed randomly at ideal fcc lattice positions; (b) after 5 

million MC steps; (c) after 10 million MC steps; and (d) after 20 million MC 

steps. In these figures, the open circles represent the Pt atoms and the gray circles 

stand for the Re atoms. As a guide to the eye, one {100} facet is delineated with 

dashed lines. 

FIG. 8. Plot of the approximately linear relation between the atomic cohesive energy U/N 

(in eV) of fcc cubo-octahedral (circles) and hcp truncated hexagonal bipyramidal 

(squares) Pt50Re50 nanoparticles and N-1/3 (the scaled number of atoms of these 

nanoparticles). The open circles and squares represent the results for nanoparticles 

in which Pt and Re atoms are distributed randomly, while the filled circles and 

squares are for nanoparticles in which Pt atoms segregate to surfaces.  
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Figure 1, G. Wang et al 
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Figure 2, G. Wang et al 
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Figure 3. G. Wang et al 
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Figure 4, G. Wang et al 
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Figure 5, G. Wang et al 
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Figure 6, G. Wang et al  
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Figure 7, G. Wang et al  
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Figure 8, G. Wang et al 

 

 


