787 research outputs found
Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells
Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells
2018-5 The Collapse and Recovery of the Capital Share in East Germany After 1989
After the 1990 unification, East Germany's capital income share plunged to 15.2 percent in 1991, then increased to 37.4 percent by 2015. To account for these large changes in the capital share, I model an economy that gains access to a higher productivity technology embodied in new plants. As existing low productivity plants decrease production, the capital share varies due to the non-convex production technology: plants require a minimum amount of labor to produce output. Two policies - transfers and government-mandated wage increases - have opposite effects on output growth, but contribute to lowering the capital share early in the transition
Pentacarbonyl-2κ5 C-chlorido-1κCl-bis[1(η5)-cyclopentadienyl](μ-α-oxidobenzylidene-1:2κ2 O:C)titanium(IV)tungsten(0)
The title compound, [TiW(C5H5)2(C7H5O)Cl(CO)5], consists of two metal centres, with a (tungstenpentacarbonyl)oxyphenylcarbene unit coordinated by a titanocene chloride. The oxycarbene group is nearly planar, with the phenyl ring twisted by an angle of 39.1 (2)° with respect to this plane. One of the cyclopentadienyl rings undergoes an offset face-to-face π–π interaction [3.544 (6) Å] with the symmetry-related cyclopentadienyl ring of a neighbouring molecule
Interaction of photons with plasmas and liquid metals: photoabsorption and scattering
Formulas to describe the photoabsorption and the photon scattering by a
plasma or a liquid metal are derived in a unified manner with each other. It is
shown how the nuclear motion, the free-electron motion and the core-electron
behaviour in each ion in the system determine the structure of photoabsorption
and scattering in an electron-ion mixture. The absorption cross section in the
dipole approximation consists of three terms which represent the absorption
caused by the nuclear motion, the absorption owing to the free-electron motion
producing optical conductivity or inverse Bremsstrahlung, and the absorption
ascribed to the core-electron behaviour in each ion with the Doppler
correction. Also, the photon scattering formula provides an analysis method for
experiments observing the ion-ion dynamical structure factor (DSF), the
electron-electron DSF giving plasma oscillations, and the core-electron DSF
yielding the X-ray Raman (Compton) scattering with a clear definition of the
background scattering for each experiment, in a unified manner. A formula for
anomalous X-ray scattering is also derived for a liquid metal. At the same
time, Thomson scattering in plasma physics is discussed from this general point
of view.Comment: LaTeX file: 18 pages without figur
Fluorescent Nanozeolite Receptors for the Highly Selective and Sensitive Detection of Neurotransmitters in Water and Biofluids
The design and preparation of synthetic binders (SBs) applicable for small biomolecule sensing in aqueous media remains very challenging. SBs designed by the lock-and-key principle can be selective for their target analyte but usually show an insufficient binding strength in water. In contrast, SBs based on symmetric macrocycles with a hydrophobic cavity can display high binding affinities but generally suffer from indiscriminate binding of many analytes. Herein, a completely new and modular receptor design strategy based on microporous hybrid materials is presented yielding zeolite-based artificial receptors (ZARs) which reversibly bind the neurotransmitters serotonin and dopamine with unprecedented affinity and selectivity even in saline biofluids. ZARs are thought to uniquely exploit both the non-classical hydrophobic effect and direct non-covalent recognition motifs, which is supported by in-depth photophysical, and calorimetric experiments combined with full atomistic modeling. ZARs are thermally and chemically robust and can be readily prepared at gram scales. Their applicability for the label-free monitoring of important enzymatic reactions, for (two-photon) fluorescence imaging, and for high-throughput diagnostics in biofluids is demonstrated. This study showcases that artificial receptor based on microporous hybrid materials can overcome standing limitations of synthetic chemosensors, paving the way towards personalized diagnostics and metabolomics
Exploring a structural protein-drug interactome for new therapeutics in lung cancer
The pharmacology of drugs is often defined by more than one protein target. This property can be exploited to use approved drugs to uncover new targets and signaling pathways in cancer. Towards enabling a rational approach to uncover new targets, we expand a structural protein-ligand interactome () by scoring the interaction among 1000 FDA-approved drugs docked to 2500 pockets on protein structures of the human genome. This afforded a drug-target network whose properties compared favorably with previous networks constructed using experimental data. Among drugs with the highest degree and betweenness two are cancer drugs and one is currently used for treatment of lung cancer. Comparison of predicted cancer and non-cancer targets reveals that the most cancer-specific compounds were also the most selective compounds. Analysis of compound flexibility, hydrophobicity, and size showed that the most selective compounds were low molecular weight fragment-like heterocycles. We use a previously-developed screening approach using the cancer drug erlotinib as a template to screen other approved drugs that mimic its properties. Among the top 12 ranking candidates, four are cancer drugs, two of them kinase inhibitors (like erlotinib). Cellular studies using non-small cell lung cancer (NSCLC) cells revealed that several drugs inhibited lung cancer cell proliferation. We mined patient records at the Regenstrief Medical Record System to explore the possible association of exposure to three of these drugs with occurrence of lung cancer. Preliminary in vivo studies using the non-small cell lung cancer (NCLSC) xenograft model showed that losartan- and astemizole-treated mice had tumors that weighed 50 (p < 0.01) and 15 (p < 0.01) percent less than the treated controls. These results set the stage for further exploration of these drugs and to uncover new drugs for lung cancer therapy
Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study
The static and dynamic structure of liquid Al is studied using the orbital
free ab-initio molecular dynamics method. Two thermodynamic states along the
coexistence line are considered, namely T = 943 K and 1323 K for which X-ray
and neutron scattering data are available. A new kinetic energy functional,
which fulfills a number of physically relevant conditions is employed, along
with a local first principles pseudopotential. In addition to a comparison with
experiment, we also compare our ab-initio results with those obtained from
conventional molecular dynamics simulations using effective interionic pair
potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR
Density fluctuations and single-particle dynamics in liquid lithium
The single-particle and collective dynamical properties of liquid lithium
have been evaluated at several thermodynamic states near the triple point. This
is performed within the framework of mode-coupling theory, using a
self-consistent scheme which, starting from the known static structure of the
liquid, allows the theoretical calculation of several dynamical properties.
Special attention is devoted to several aspects of the single-particle
dynamics, which are discussed as a function of the thermodynamic state. The
results are compared with those of Molecular Dynamics simulations and other
theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.
Molecular pathways governing development of vascular endothelial cells from ES/iPS cells
Assembly of complex vascular networks occurs in numerous biological systems through morphogenetic processes such as vasculogenesis, angiogenesis and vascular remodeling. Pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any cell type, including endothelial cells (ECs), and have been extensively used as in vitro models to analyze molecular mechanisms underlying EC generation and differentiation. The emergence of these promising new approaches suggests that ECs could be used in clinical therapy. Much evidence suggests that ES/iPS cell differentiation into ECs in vitro mimics the in vivo vascular morphogenic process. Through sequential steps of maturation, ECs derived from ES/iPS cells can be further differentiated into arterial, venous, capillary and lymphatic ECs, as well as smooth muscle cells. Here, we review EC development from ES/iPS cells with special attention to molecular pathways functioning in EC specification
- …