1,220 research outputs found

    Campus Mobility for the Future: The Electric Bicycle

    Get PDF
    Sustainable and practical personal mobility solutions for campus environments have traditionally revolved around the use of bicycles, or provision of pedestrian facilities. However many campus environments also experience traffic congestion, parking difficulties and pollution from fossil-fuelled vehicles. It appears that pedal power alone has not been sufficient to supplant the use of petrol and diesel vehicles to date, and therefore it is opportune to investigate both the reasons behind the continual use of environmentally unfriendly transport, and consider potential solutions. This paper presents the results from a year-long study into electric bicycle effectiveness for a large tropical campus, identifying barriers to bicycle use that can be overcome through the availability of public use electric bicycles

    Moduli spaces of vector bundles over a Klein surface

    Full text link
    A compact topological surface S, possibly non-orientable and with non-empty boundary, always admits a Klein surface structure (an atlas whose transition maps are dianalytic). Its complex cover is, by definition, a compact Riemann surface M endowed with an anti-holomorphic involution which determines topologically the original surface S. In this paper, we compare dianalytic vector bundles over S and holomorphic vector bundles over M, devoting special attention to the implications that this has for moduli varieties of semistable vector bundles over M. We construct, starting from S, totally real, totally geodesic, Lagrangian submanifolds of moduli varieties of semistable vector bundles of fixed rank and degree over M. This relates the present work to the constructions of Ho and Liu over non-orientable compact surfaces with empty boundary (arXiv:math/0605587) .Comment: 19 pages, 1 figur

    HandsOff: Labeled Dataset Generation With No Additional Human Annotations

    Full text link
    Recent work leverages the expressive power of generative adversarial networks (GANs) to generate labeled synthetic datasets. These dataset generation methods often require new annotations of synthetic images, which forces practitioners to seek out annotators, curate a set of synthetic images, and ensure the quality of generated labels. We introduce the HandsOff framework, a technique capable of producing an unlimited number of synthetic images and corresponding labels after being trained on less than 50 pre-existing labeled images. Our framework avoids the practical drawbacks of prior work by unifying the field of GAN inversion with dataset generation. We generate datasets with rich pixel-wise labels in multiple challenging domains such as faces, cars, full-body human poses, and urban driving scenes. Our method achieves state-of-the-art performance in semantic segmentation, keypoint detection, and depth estimation compared to prior dataset generation approaches and transfer learning baselines. We additionally showcase its ability to address broad challenges in model development which stem from fixed, hand-annotated datasets, such as the long-tail problem in semantic segmentation.Comment: 22 pages, 20 figure

    The curvaton scenario in the MSSM and predictions for non-Gaussianity

    Get PDF
    We provide a model in which both the inflaton and the curvaton are obtained from within the minimal supersymmetric Standard Model, with known gauge and Yukawa interactions. Since now both the inflaton and curvaton fields are successfully embedded within the same sector, their decay products thermalize very quickly before the electroweak scale. This results in two important features of the model: firstly, there will be no residual isocurvature perturbations, and secondly, observable non-Gaussianities can be generated with the non-Gaussianity parameter fNL∌O(5−1000)f_\mathrm{NL}\sim {\cal O}(5-1000) being determined solely by the combination of weak-scale physics and the Standard Model Yukawas.Comment: 4 pages, no figure

    Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO

    Full text link
    We discuss the properties of semiconducting bulk ZnO when substituted with the magnetic transition metal ions Mn and Co, with substituent fraction ranging from xx = 0.02 to xx = 0.15. The magnetic properties were measured as a function of magnetic field and temperature and we find no evidence for magnetic ordering in these systems down to TT = 2 K. The magnetization can be fit by the sum of a Curie-Weiss term with a Weiss temperature of Θ≫\Theta\gg100 K and a Curie term. We attribute this behavior to contributions from both \textit{t}M ions with \textit{t}M nearest neighbors and from isolated spins. This particular functional form for the susceptibility is used to explain why no ordering is observed in \textit{t}M substituted ZnO samples despite the large values of the Weiss temperature. We also discuss in detail the methods we used to minimize any impurity contributions to the magnetic signal.Comment: 6 pages, 4 figures (revised

    Phase Diagram Of A Hard-sphere System In A Quenched Random Potential: A Numerical Study

    Get PDF
    We report numerical results for the phase diagram in the density-disorder plane of a hard sphere system in the presence of quenched, random, pinning disorder. Local minima of a discretized version of the Ramakrishnan-Yussouff free energy functional are located numerically and their relative stability is studied as a function of the density and the strength of disorder. Regions in the phase diagram corresponding to liquid, glassy and nearly crystalline states are mapped out, and the nature of the transitions is determined. The liquid to glass transition changes from first to second order as the strength of the disorder is increased. For weak disorder, the system undergoes a first order crystallization transition as the density is increased. Beyond a critical value of the disorder strength, this transition is replaced by a continuous glass transition. Our numerical results are compared with those of analytical work on the same system. Implications of our results for the field-temperature phase diagram of type-II superconductors are discussed.Comment: 14 pages, 10 postscript figures (included), submitted to Phys. Rev.
    • 

    corecore