4,129 research outputs found

    Multifield Inflation after Planck: Isocurvature Modes from Nonminimal Couplings

    Full text link
    Recent measurements by the {\it Planck} experiment of the power spectrum of temperature anisotropies in the cosmic microwave background radiation (CMB) reveal a deficit of power in low multipoles compared to the predictions from best-fit Λ\LambdaCDM cosmology. The low-ℓ\ell anomaly may be explained by the presence of primordial isocurvature perturbations in addition to the usual adiabatic spectrum, and hence may provide the first robust evidence that early-universe inflation involved more than one scalar field. In this paper we explore the production of isocurvature perturbations in nonminimally coupled two-field inflation. We find that this class of models readily produces enough power in the isocurvature modes to account for the \emph{Planck} low-ℓ\ell anomaly, while also providing excellent agreement with the other {\it Planck} results.Comment: 19 pages, 15 figures. Minor edits to match published versio

    Grid OCL: A Graphical Object Connecting Language

    No full text
    In this paper we present an overview of the Grid OCL graphical object connecting language Grid OCL is an extension of Grid introduced last year that allows users to interactively build complex data processing systems by selecting a set of desired tools and connecting them together graphically Algorithms written in this way can now also be run outside the graphical environment

    The Grid Signal Processing System

    Get PDF

    A stochastic template placement algorithm for gravitational wave data analysis

    Get PDF
    This paper presents an algorithm for constructing matched-filter template banks in an arbitrary parameter space. The method places templates at random, then removes those which are "too close" together. The properties and optimality of stochastic template banks generated in this manner are investigated for some simple models. The effectiveness of these template banks for gravitational wave searches for binary inspiral waveforms is also examined. The properties of a stochastic template bank are then compared to the deterministically placed template banks that are currently used in gravitational wave data analysis.Comment: 14 pages, 11 figure

    Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data

    Get PDF
    We describe a procedure to identify and remove a class of non-stationary and non-harmonic interference lines from gravitational wave interferometer data. These lines appear to be associated with the external electricity main supply, but their amplitudes are non-stationary and they do not appear at harmonics of the fundamental supply frequency. We find an empirical model able to represent coherently all the non-harmonic lines we have found in the power spectrum, in terms of an assumed reference signal of the primary supply input signal. If this signal is not available then it can be reconstructed from the same data by making use of the coherent line removal algorithm that we have described elsewhere. All these lines are broadened by frequency changes of the supply signal, and they corrupt significant frequency ranges of the power spectrum. The physical process that generates this interference is so far unknown, but it is highly non-linear and non-stationary. Using our model, we cancel the interference in the time domain by an adaptive procedure that should work regardless of the source of the primary interference. We have applied the method to laser interferometer data from the Glasgow prototype detector, where all the features we describe in this paper were observed. The algorithm has been tuned in such a way that the entire series of wide lines corresponding to the electrical interference are removed, leaving the spectrum clean enough to detect signals previously masked by them. Single-line signals buried in the interference can be recovered with at least 75 % of their original signal amplitude.Comment: 14 pages, 5 figures, Revtex, psfi

    Calorimetric tunneling study of heat generation in metal-vacuum-metal tunnel junction

    Full text link
    We have proposed novel calorimetric tunneling (CT) experiment allowing exact determination of heat generation (or heat sinking) in individual tunnel junction (TJ) electrodes which opens new possibilities in the field of design and development of experimental techniques for science and technology. Using such experiment we have studied the process of heat generation in normal-metal electrodes of the vacuum-barrier tunnel junction (VBTJ). The results show there exists dependence of the mutual redistribution of the heat on applied bias voltage and the direction of tunnel current, although the total heat generated in tunnel process is equal to Joule heat, as expected. Moreover, presented study indicates generated heat represents the energy of non-equilibrium quasiparticles coming from inelastic electron processes accompanying the process of elastic tunneling.Comment: 8 pages, 3 figures, LaTe

    Topological Reverberations in Flat Space-times

    Get PDF
    We study the role played by multiply-connectedness in the time evolution of the energy E(t) of a radiating system that lies in static flat space-time manifolds M_4 whose t=const spacelike sections M_3 are compact in at least one spatial direction. The radiation reaction equation of the radiating source is derived for the case where M_3 has any non-trivial flat topology, and an exact solution is obtained. We also show that when the spacelike sections are multiply-connected flat 3-manifolds the energy E(t) exhibits a reverberation pattern with discontinuities in the derivative of E(t) and a set of relative minima and maxima, followed by a growth of E(t). It emerges from this result that the compactness in at least one spatial direction of Minkowski space-time is sufficient to induce this type of topological reverberation, making clear that our radiating system is topologically fragile. An explicit solution of the radiation reaction equation for the case where M_3 = R^2 x S^1 is discussed, and graphs which reveal how the energy varies with the time are presented and analyzed.Comment: 16 pages, 4 figures, REVTEX; Added five references and inserted clarifying details. Version to appear in Int. J. Mod. Phys. A (2000

    Third post-Newtonian accurate generalized quasi-Keplerian parametrization for compact binaries in eccentric orbits

    Full text link
    We present Keplerian-type parametrization for the solution of third post-Newtonian (3PN) accurate equations of motion for two non-spinning compact objects moving in an eccentric orbit. The orbital elements of the parametrization are explicitly given in terms of the 3PN accurate conserved orbital energy and angular momentum in both Arnowitt, Deser, and Misner-type and harmonic coordinates. Our representation will be required to construct post-Newtonian accurate `ready to use' search templates for the detection of gravitational waves from compact binaries in inspiralling eccentric orbits. Due to the presence of certain 3PN accurate gauge invariant orbital elements, the parametrization should be useful to analyze the compatibility of general relativistic numerical simulations involving compact binaries with the corresponding post-Newtonian descriptions. If required, the present parametrization will also be needed to compute post-Newtonian corrections to the currently employed `timing formula' for the radio observations of relativistic binary pulsars.Comment: 33 pages, 1 figur
    • …
    corecore