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A stochastic template placement algorithm for gravitational wave data analysis
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This paper presents an algorithm for constructing matched-filter template banks in an arbitrary
parameter space. The method places templates at random, then removes those which are “too close”
together. The properties and optimality of stochastic template banks generated in this manner are
investigated for some simple models. The effectiveness of these template banks for gravitational wave
searches for binary inspiral waveforms is also examined. The properties of a stochastic template
bank are then compared to the deterministically placed template banks that are currently used in
gravitational wave data analysis.

PACS numbers:

I. INTRODUCTION

Gravitational wave interferometric detectors have recently completed a science run in which a year of coincident
data was taken at the design sensitivity [1, 2]. The data from this science run has been searched for gravitational
wave signals from compact binary inpsirals, unmodelled transient sources, periodic sources and stochastic signals e.g.
[3, 4, 5]. For many of these searches, analysis of the data from such detectors takes advantage of the fact that the
waveforms can be predicted in advance and thus used in carrying out the analysis [6]
The commonly used detection strategy to search for known signals in additive, Gaussian, stationary noise is the

method of matched filtering [7]. One correlates the (whitened) detector data with a template (or filter), which is
the (whitened) expected signal waveform. The parameters of the source (sky position and rotational frequency of a
spinning neutron star, the masses of the compact stars in a binary system, etc.) are not known a-priori, so the data
must be correlated with many possible expected signal waveforms, which have different values of parameters. The
collection of these points in parameter space is called a template bank or template grid.
The past two decades have seen the development of methods [8, 9, 10, 11] for setting up template banks which

minimize the computational cost in a search without reducing the detectability of signals. For instance, a geometric
framework was developed [12, 13, 14] in the 1990’s to address the problem of template placement. This works quite
well when the parameter space is of a small dimension (2, 3, or 4 at most) [15, 16, 17, 18]. The most important tool in
this geometric framework is a positive-definite metric which measures the fractional loss in (squared) signal-to-noise
ratio of a putative signal (at one point in the parameter space) filtered through the optimal filter corresponding to
a nearby point in the parameter space. The metric gives the parameter space the geometric structure of a (possibly
curved) Riemannian manifold, which is often called the signal manifold (in this paper we continue to refer to it as the
parameter space).
When the dimension of the parameter space becomes large there are problems with existing methods. First, even for

flat parameter spaces, there are no known optimal placement algorithms for dimensions greater than 5 (the analogue
of the two-dimensional hexagonal lattice) [19] (and references therein). Second, it is not clear how to place templates
in a curved parameter space. For example, one cannot set up an optimal (equally-spaced) lattice on a two-sphere
unless the number of points is very small (for example, 12). This issue becomes increasingly important in parameter
spaces with dimension greater than 2. Third, if the parameter space includes irregular boundaries, or is formed of
regions with differing dimensions, it is extremely difficult to “step around” the parameter space in a deterministic
way that covers the parameter space completely but does not significantly over-cover it.
This paper gives a template placement algorithm that works for any parametrized signal model in any number of

dimensions, provided that one can determine if two points in the parameter space are a large metric distance apart,
and, if they are not, accurately calculate the metric distance between them. The idea is simple. Pick points at random
in parameter space, rejecting any points that are too close to those previously retained. Continue this process until
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no new points are added, because any newly selected random points are close to previously retained points. We call
this a stochastic template placement algorithm, and the resulting grid a stochastic template grid or stochastic template

bank.
By construction, the stochastic template bank does not over-populate the parameter space. But does it properly

populate all regions? The answer depends upon the properties of the signal manifold and its metric. It is very similar
to the question of whether the Monte-Carlo approximation to an integral converges to the correct value. And in the
same way as with Monte-Carlo integration, these stochastic template banks appear to perform very well in real-world
applications.
This method is closely related to another way of creating random template banks, [20], in which the filtering stage

is not carried out, but has certain advantages. In particular, fewer templates are needed to obtain a given degree of
coverage of the parameter space. However, the filtering stage can become computationally expensive.
Some practical issues remain. The most convenient way to generate a random template bank is to use computer-

generated uniformly-distributed random numbers as random coordinate values in parameter space. However, the
distribution of the resulting points then depends strongly upon the choice of the coordinate system. If global coordi-
nates can be found in which the determinant of the metric is constant (or nearly constant) then choosing uniformly
distributed random numbers for the coordinate values will result in a uniform density of points. This is optimal. If
not, the random points should ideally be generated with a probability density in coordinate space proportional to the
square root of the determinant of the metric in those coordinates. (One can also pick a small number of points in the
space, and at each point define a local coordinate system in which the metric is proportional to δab, then place many
points uniformly in those coordinates.) In practice, this is not necessary: this paper shows that a stochastic template
bank can still be effectively generated by choosing uniform probability distributions for the coordinate values, even if
the determinant of the metric is not constant on those coordinates. The only downside is additional computational
cost.
Later in this paper, two examples are shown to illustrate this: the placement of templates in a D-dimension

cube, and the placement of templates on the signal manifold of gravitational wave chirps from inspiralling compact
binaries calculated in the first post-Newtonian approximation. In both cases, one can create stochastic template
banks using coordinates (polar, and masses (m1,m2), respectively) in which the determinant of the metric is not
constant. This incurs unnecessary computation cost, but it works. Alternatively, one can create a stochastic template
bank using coordinates (Cartesian, and chirp-time coordinates (τ1, τ3), respectively) in which the metric (and hence
its determinant) is approximately constant [11]. This works better, since it is computationally more efficient, but the
end result is the same.
The paper is organized as follows. Sec. II presents the stochastic template placement algorithm. An implementation

and results of testing are presented in Sec. III for some simple cases where the number of templates is known
analytically. Sec. IV is devoted to the application of the algorithm to the case of gravitational wave chirps from
inspiralling compact binaries where the performance of the stochastic template placement method is compared with
existing geometrical template placement algorithms.

II. STOCHASTIC TEMPLATE PLACEMENT ALGORITHM

Let M denote a signal manifold of dimension D, with d(x, y) being a positive-definite distance function. Here
x, y ∈ M are points in the manifold. Note that the signal manifold M might cover only part of the space of possible
signals of a particular type, for example one might only want to lay a bank to search for binary inspiral signals within
a specific range of masses.
A template bank T is a set of n points taken from M: T = {x1, · · · , xn; xi ∈ M}. A template bank is said to cover

the signal manifold with radius ∆ (or to be complete) if every point in M lies within distance ∆ of at least one of
the n points: ∀y ∈ M, d(y, xi) ≤ ∆ for at least one i ∈ 1, · · · , n.
An optimal template bank of radius ∆ would fulfill two conditions. First, it would cover the signal manifold with

radius ∆. Second, it would contain the minimum number of points. However, it is difficult to achieve this in practice!
The method proposed in this paper creates a template bank according to the following algorithm:

1. Let T be a list of n points from M. Initially n = 0 and the list is empty. As points get added to this list, they
will be denoted by x1, · · · , xn.

2. Pick a point z at random from M. If d(z, xi) > ∆ for all points in the list T , then add z to T and increment n
by one. Else discard the point z.

3. Repeat the previous step, until the list T stops changing in length, or some other stopping criterion is met.
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A. Expected size of complete stochastic template banks

An important question to ask is at what point will this iterative process terminate? This is determined by the
number of templates needed to completely cover the space. To understand this, it is useful to first ask the more
general question, how large does a complete template bank (not necessarily one generated by the algorithm above)
need to be? To try to understand these questions this sub-section begins by discussing upper and lower bounds on
the size of the stochastic bank. Two commonly used lattice algorithms are then discussed and the performance of the
stochastic bank, at low dimension, is compared to these quantities.
In this discussion we follow [20, 21] and use thickness (Θ) and normalized thickness (θ) to assess the efficiency of

a specific template covering. Thickness is defined [21] as the average number of templates covering any point in the
parameter space while normalized thickness is defined as the number of templates per unit volume in the case where
the radius of the templates is unity. They are related by [21]

θ = Θ/VS . (2.1)

where VS is the volume enclosed by a D-dimensional sphere of unit radius

VS =
2πD/2

D Γ(D/2)
. (2.2)

The advantage of using these quantities is that they are independant of the size of the parameter space and independant
of the template radius. These quantities are also directly related to the number of templates that will be required
[20], by

θ =
n∆D

V
(2.3)

where V is the proper D−volume of the parameter space,

V =

∫

M

√
g dDx (2.4)

and g is the determinant of the metric gij on the manifold M.
We also assume, in this section, that “boundary effects” can be ignored. Except in pathological cases, this is true

if the total volume within distance ∆ of ∂M is small compared with the total volume of M.
A simple theoretical lower bound on the number of templates needed in any complete template bank is the ratio

of the volume of the parameter space to the volume of a single template. The volume of a single template is the
D−volume contained in a ball of radius ∆ is given by

Vtemplate = B(∆) = VS∆
D. (2.5)

Hence the number of required templates is bounded below by V/Vtemplate. Alternatively we can say that the thickness
of a complete template bank must be greater than unity or that the normalized thickness must be greater than 1/VS.
For the case of flat spaces a great deal of work has been carried out in trying to obtain better estimates of the
minimum possible thickness for a complete template bank, it is clear, for example, that even in the 2 dimensional
case a complete template bank cannot have a thickness of 1, there must be some overlap between the templates. In
[21] the best currently known theoretical bounds on thickness are given and these are the values that are shown as
the lower bound in Figure 1.
To try to obtain an upper bound on the thickness of the stochastic template bank one can consider the sphere-

packing problem, this is the question of how many non-overlapping spheres can be packed into a certain volume.
Consider the packing problem with hard spheres of radius ∆/2. Since the centers of any of these spheres are distances
of ∆ or more apart, they are suitable locations for a stochastic template bank. In Ref. [21] a bound is given on the
number of hard spheres of radius ∆/2 that can be placed into a volume V . This can be considered as an upper bound
on the number of templates that the stochastic algorithm can place. Figure 2 also suggests that this bound may be a
reasonable estimate of the thickness of a complete stochastic bank, it can be seen that the average minimum distance
between any template and the rest of the bank is close to ∆, as it would be in the sphere packing problem. However,
at least for low dimension (D < 4), Figure 1 shows that the a complete stochastic template bank requires considerably
fewer templates than this sphere packing upper bound.
It is also useful to compare this with the performance of known lattice algorithms. In this work two different lattice

algorithms are considered. The first is the hyper-cubical lattice, where the hyper-cubes of the lattice are just small
enough to fit entirely inside a single ball of radius ∆. The side length δ of such a cube is given by

δ = 2∆(1/D)
0.5

, (2.6)
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FIG. 1: The theoretical upper and lower bounds on normalized thickness of a stochastic template bank [21] and the
normalized thickness of known lattice algorithms as a function of dimension as defined by equations (2.7) and (2.8).

Also the obtained thickness of stochastic banks at dimensions less than 5.

FIG. 2: A histogram of the distribution of distances from a template to the nearest template, in units of the closest
possible spacing ∆, for a simple three-dimensional example. The distances are clustered close to the minimum
possible spacing ∆, showing that the covering locations found by the stochastic template placement method are

close to the positions found by packing spheres of radius ∆/2.

since the longest diagonal of this D-cube is then 2∆ long. Thus

θhyper−cubic =
DD/2

2D
(2.7)

describes the normalized thickness of a template bank in a hyper-cubic arrangement.
The second lattice algorithm considered in this work is the A∗

n lattice [19, 21]. The 2 dimensional A∗
n lattice is the

well known hexagonal lattice. For this algorithm the normalized thickness is given by [20]

θA∗

N
=

√
D + 1

[

D (D + 2)

12 (D + 1)

]D/2

. (2.8)

From Figure 1 it can be seen that the A∗
n lattice requires less templates than the hyper-cubic lattice in all dimensions

(except the trivial one-dimensional case). It is also the most efficient lattice known in dimensions up to 20 [21].
This figure also shows that the number of templates required to create a complete stochastic bank is less than the
hyper-cubic lattice, but only when the dimension D is greater than 3. A stochastic template bank with full coverage,
however, will require more templates than the A∗

n lattice at least up to four dimensions. We have no reason to believe
that a complete stochastic bank will be more efficient than the A∗

n lattice in any dimension.
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One must consider however that these lattice algorithms are only defined in the case of flat parameter spaces. The
stochastic algorithm on the other hand can be used in any parameter space and it is in the cases where the parameter
space is not flat that we believe the stochastic bank would be the most useful.

B. The convergence of a stochastic template bank

In real world applications it may not be necessary for the template bank to be complete. It is therefore useful to
be able to understand the convergence of the iteration that creates a stochastic template bank. This sub-section is
devoted to trying to understand this convergence and comparing it to the method describe in [20].
To begin to understand how a stochastic bank converges it is necessary to define a covering fraction f ∈ [0, 1].

The covering fraction is the ratio of the volume of the subset of M that lies within a distance ∆ of the points in
the template bank, to the total volume of M. The expected number of trials required to add a new template to the
list is given by 1/(1 − f), as can be seen by considering the template placement process as a form of Monte-Carlo
integration.
At the beginning of the iterative process, the template bank is empty, and f = 0. After the first template is added

(and assuming that boundary effects can be ignored!) the covering fraction is f = ǫ, where ǫ = Vtemplate/V , which is
the fraction of the entire volume covered by a single template. During the first iterative steps, while the number of
templates n in the bank is small, n ≪ 1/ǫ, the covering fraction increases linearly with the template number according
to f = ǫn = nVtemplate/V .
How does the covering fraction increase when n becomes larger? To understand this, it is helpful to first consider

the behavior that the covering fraction would have in the case where the n points in the template bank were simply
selected at random from M, without any consideration of whether or not they were closer together than ∆. This
case is considered in some detail in a recent paper on random template banks [20]. (In contrast, this paper uses the
name stochastic template bank.) In that case, since on average each additional template removes a fraction ǫ of the
volume that is not already covered, one obtains

E(f(n)) = 1− exp(−ǫn) (2.9)

or

E(f(Θ)) = 1− exp(−Θ) (2.10)

for the expectation value of the coverage. For small n, this gives a linear increase in the covering fraction, which also
describes the stochastic template bank.
Compared to the random template bank, on the average, a stochastic template bank gives higher coverage for

a given number of templates. This is illustrated in Figure 3, which shows the covering fraction as a function of
thickness, where the signal manifold M is a unit box in 2, 3 and 4 dimensions. Thus, if it is desirable to minimize the
computation cost because a single template bank is going to be used and re-used many times, the stochastic banks
could offer a significant improvement compared with the random ones. The graph does seem to indicate, however,
that the stochastic bank converges toward the random case as dimension increases. Further investigation is needed
to demonstrate what level of improvement the stochastic bank would have over the random bank at high dimension.

C. Computational cost of filtering templates

While the stochastic bank will provide a better coverage for the same number of templates, one must incur an extra
computational cost to carry out the filtering stage of the stochastic placement algorithm. This sub-section investigates
what this computational cost would be as a function of number of templates and covering fraction.
If every random point was accepted as a template, because it was farther than ∆ from all previous templates, then

the computational cost would be

C = αn(n− 1)/2, (2.11)

where α is the cost of computing the distance between two points. This follows because the distance must be calculated
between all possible pairs of templates, and there are n(n − 1)/2 such pairs. This also correctly describes the cost
of stochastic template bank creation when the covering fraction is substantially less than one, and few potential
templates are rejected. But when the covering fraction approaches one, the computational cost explodes, because the
dominant computational cost is the cost of rejecting templates. This is shown in Figure 4.
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FIG. 3: The relationship between the covering fraction and the thickness of the bank in 2, 3 and 4 dimensions. This
is also compared to what one would expect in the case of the random template bank [20], as well as the case where

no templates overlap each other.

FIG. 4: The computational cost (number of distance calculations) depends on the covering fraction.

This also allows us to provide an estimate of the computational cost. In practice, 100% coverage is not necessary
or desired. For a typical binary inspiral search one might be happy with a coverage f ∈ [0.9, 0.99]. For such coverages
the computation cost is bounded above by

C =
α

1− f

n2
estimated

2
, (2.12)

which is obtained by assuming that the cost of adding the last template is the same as the cost of adding every
template. This is an upper bound because the factor of 1/2 is larger than n(f = 1/2)/nestimated, and because the
computational cost of adding the earlier templates is smaller than that of adding the final template.
The computational cost of this method grows faster than the square of the number of templates. However, there is

a modified version of this algorithm in development that has a cost proportional to n logn. This maintains an internal
list of hyper-cubic cells, which contain points separated by distances of less than 2∆. When a new random template
is considered, its distance only needs to be compared to the points in the same cell, and the 3D − 1 neighboring cells.
The process of looking to see if there are neighboring cells requires a binary search in an index list, and accounts for
the additional logn factor.
It is this prohibitive computational cost that has prevented us from being able to test the stochastic template bank

in dimensions higher than 4 without boundary effects becoming rather pronounced. With this improved version of
the algorithm it is hoped that a test of the stochastic bank in higher dimensions can be performed.
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III. TESTING THE ALGORITHM

This section investigates how the stochastic template placement performs in dimensions less than 5 and how
this compares with geometrical placement algorithms. An investigation of how the algorithm performs when the
distribution of initial seed points is not proportional to the determinant of the metric is carried out as well as a
demonstration that the stochastic algorithm will perform well in intrinsically curved parameter spaces.

A. Templates in flat spaces of different dimensions

First consider a flat unit hyper-cube in D-dimensions, with Cartesian coordinates and the metric gij = δij . Each
coordinate lies in the range [0, 1]. ∆ is chosen so that 1/ǫ is equal to 10000.
Figures 3 and 4 show the coverage, in 2, 3 and 4 dimension, and computational cost as a function of the number

of templates in the bank. The coverage in Fig. 3 was computed using Monte-Carlo integration with 20,000 sample
points. The coverage is the fraction of these points that are less than ∆ from a template in the bank. To generate
Fig. 3 as well as Figures 5, 4, 9 and Tables I and II this process was carried out 100 times and the mean of the values
obtained was used.
Figure 1 compares the number of templates being converged upon by the stochastic bank with the estimates and

the lattice algorithms as described in section II. It can be seen from this table that the stochastic template banks
perform better than the naive hyper-cubic lattices as the dimension D of the parameter space increases. This is
what was predicted in the previous section: the stochastic template banks converge to “complete” coverage with
fewer templates than would be needed in a cubic lattice. Also, as predicted, the A∗

n lattice is more efficient than the
stochastic bank when the stochastic bank has reached complete coverage.
An interesting feature, which is more noticeable when the number of templates in the banks is reduced, is that they

show effects due to the boundaries, especially noticeable in the higher dimensions. This is easy to understand. Any
template located closer than distance ∆ to the boundary of the unit D−cube will have part of its coverage region
lying outside the cube. Consequently, if ∆ is too large, then many of the templates will fail to produce the amount
of coverage that would arise if no boundaries were present. Thus, a sign that boundary effects are appearing is that
the initial coverage grows more slowly with template number than expected.
This effect can be seen in Figure 5 where the initial slope df/dΘ at Θ = 0 is smaller than unity and also the final

thickness is much larger than the estimate, which was not seen in Figure 3. At what template radius ∆ do boundary
effects become significant? This can be easily understood by estimating the volume that lies within distance ∆ of the
boundary of the D−cube. This is V∆−boundary = V − (V 1/D − 2∆)D ≈ 2D∆V 1−1/D. Hence the initial coverage,
when Θ ≪ 1, is

(

df

dΘ

)

Θ=0

= 1− β
V∆−boundary

V
. (3.1)

Here β is a numerical factor, of order 1/6 in three dimensions, which measures the average fraction of volume of a
template that lies outside the cube, as the center of the template moves through all positions in the ∆−boundary.

B. Choice of coordinate system and convergence of template numbers

How does the convergence of the stochastic template bank generation depend upon the distribution of the random
template candidates in the underlying parameter space? This question is of practical interest, because the optimal
distribution of the random points has a probability proportional to the the volume element

√

det (gab)d
Dx. However,

it can be difficult in practice to generate such a distribution, whereas it is simple to generate random points that have
a uniform distribution in the coordinates.
For example, in two-dimensional flat space, one could choose trial points with uniform probability distributions in

polar coordinates. This means that too many random templates are tested from the region near the origin, and then
rejected. However, they are soon rejected, as being too close to points already in the template bank, and in the end,
the template points that survive have the correct probability distribution proportional to dx dy = r dθ dr. This is
shown in Figure 6.
Table I shows the number of templates n as a function of the number of trial points N for random template

candidates distributed uniformly in Cartesian and polar coordinates. Also shown is the coverage of the template
bank, calculated using Monte-Carlo integration as described in the previous section.
This is very useful because in many cases one does not know coordinates in which the determinant of the metric is

constant. Of course one could simply distribute points with a probability density proportional to the volume measure!
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FIG. 5: As Figure 3 but setting the value of Nlower−bound to be 50. By comparing the two figures one can see how
boundary effects manifest themselves both by decreasing the initial slope df/dn and by requiring a much larger

number of templates than the estimate.

Cartesian Polar

N n σn f σf n σn f σf

1500 1397.1 1.0 0.1353 0.0003 1313.4 1.3 0.1246 0.0003

5000 3994.4 2.6 0.3632 0.0004 3613.9 2.6 0.3237 0.0004

15000 8494.5 3.9 0.6818 0.0004 7605.3 3.9 0.6140 0.0004

50000 13961.5 4.1 0.9221 0.0002 12979.6 4.0 0.8825 0.0003

150000 17307.8 4.0 0.9847 0.0001 16676.6 3.6 0.9747 0.0001

500000 19365.5 3.1 0.99746 0.00004 19025.4 3.5 0.99582 0.00005

1500000 20439.3 3.0 0.99949 0.00001 20241.3 3.6 0.99917 0.00002

5000000 21141.9 3.5 0.99990 0.00001 21023.4 3.2 0.99987 0.00001

10000000 21401.3 3.1 0.999971 0.000003 21305.4 3.3 0.999948 0.000005

TABLE I: Number of templates n and fractional coverage f with associated standard deviations as a function of the
cumulative number of trials N in the case of Cartesian (nC) and polar (nP ) coordinates.
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FIG. 6: The distribution of trial points chosen uniformly in polar coordinates (left panel) and the points that remain
as templates after the application of the stochastic placement algorithm (right panel).
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FIG. 7: Trial points chosen uniformly in the (θ, ϕ) coordinates (left panel) and the templates on the surface of a
sphere of unit area that remain after the application of the stochastic template placement algorithm (middle panel).

Also the distribution of these templates in θ-coordinate (right panel) where the solid line shows the expected
distribution.

C. Templates on a sphere

So far the paper has considered templates in a flat signal space. However one can consider examples where the
signal manifold is not flat, but is curved. This introduces two new issues.
First, the distance between widely separated points can no longer be easily computed. However, the only important

case is the one in which the points are nearby. In this case, one can use the metric to approximate the distance at
small separations:

dl2 = gik(x
j
A)

(

xi
A − xi

B

) (

xk
A − xk

B

)

. (3.2)

Since the components of the metric can be expensive to calculate, an efficient approach is to calculate and store those
components only for points that are included in the template bank. Those metric components are then used for the
distance comparisons with potential new (randomly chosen) template candidates.
Second, depending upon the choice of the coordinate system, the determinant of the metric may be non-constant.

In this case, an efficient approach would be to generate random points with a probability distribution proportional
to the volume element

√

det (gab)d
Dx. However, in practice one can generate points with any distribution in the

coordinates: the stochastic template placement algorithm simply rejects those points that are not needed, and produces
a distribution with the correct density proportional to

√

det (gab)d
Dx.

To demonstrate the performance of the stochastic template placement algorithm on a curved manifold, consider a
unit-radius two-sphere S2 with standard spherical polar coordinates (θ, ϕ). The metric is

dl2 = dθ2 + sin2 θ dϕ2. (3.3)

Table II shows the number of templates n as a function of the number of trial points N. The size of the templates has
been chosen so that the ratio ǫ = Vtemplate/V is the same as for the unit cube examples given in the previous section.
In this case the stochastic algorithm converges for a smaller number of templates than for the unit cube. This is for
the reasons described above: since the unit sphere has no boundary, no templates lie partly outside the space, so
every template provides the largest possible coverage.
Fig. 7 shows the distribution of 5000 candidate points, chosen uniformly in spherical polar coordinates (θ, ϕ) (top

panel). The points that survive and remain in the stochastic template bank are shown in the middle panel. A
histogram of the distribution of the templates as a function of θ is also shown (right panel). As expected, the density
of templates is proportional to the volume element sin θ dθ dφ: it is smallest at the poles and the greatest at the
equator.

IV. TEMPLATES FOR GRAVITATIONAL WAVE CHIRPS

Binary systems of compact objects (i.e., black holes and/or neutron stars) evolve by emitting gravitational radiation.
The loss of energy and angular momentum into gravitational waves causes the two bodies to spiral in toward each other,
emitting a burst of radiation just before they merge. Although there is no exact solution to the two-body problem
in general relativity, an approximation method called the post-Newtonian formalism has been used to compute the
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N n σn f σf

1500.0 1330.3 1.2 0.1989 0.0004

5000.0 3688.3 2.8 0.4253 0.0004

15000.0 7807.1 3.7 0.7027 0.0004

50000.0 13198.7 4.1 0.9192 0.0002

150000.0 16779.5 4.4 0.9836 0.0001

500000.0 19007.0 3.6 0.99735 0.00003

1500000.0 20171.6 3.6 0.99947 0.00002

5000000.0 20906.6 3.8 0.99991 0.00001

10000000.0 21182.9 4.0 0.999967 0.000004

TABLE II: Number of templates n and coverage f as a function of the number of trials N on a sphere of unit radius.

amplitude and phase of the waves emitted in the adiabatic inspiral phase to a very high accuracy [22, 23, 24] (for a
recent review see Ref. [25]). Moreover, recent progress in numerical relativity has provided a good knowledge of the
waveform even in the strong gravity regime of the merger dynamics [26]. Thus, one can use matched filtering to dig
out astrophysical signals from the noise background of an interferometric detector.
In general, the radiation from a binary is characterized by as many as seventeen parameters. However, some of

these parameters (the distance to the binary, the inclination of the orbit relative to the detector, etc.) only affect
the amplitude of the waveform, which does not modify the search template. Therefore, one would only need to place
templates in a lower-dimensional parameter space (say six or seven dimensions). State-of-the-art template placement
algorithms deal only with a binary composed of non-spinning objects (in which case templates are only needed in
the two-dimensional parameter space of the masses of the component stars) or at best a simplified model of a binary
composed of spinning objects requiring one, or two, additional dimensions. Clearly, this is not satisfactory as there is
no reason to believe that an astronomical binary will respect simplified models.
The goal of the stochastic template placement algorithm is to address the problem of choosing templates on a

manifold of arbitrary dimensions. However, in this paper, the algorithm is only applied to the case of a binary
consisting of non-spinning bodies where the results are well known, thus facilitating a straightforward comparison
with established results. This algorithm has also been applied in a recent search for spinning binaries in the first
year of LIGO’s fifth science run using templates placed in a three-dimensional parameter space [27] as well as a
five-dimensional search for super-massive black holes in a mock data challenge [28]. A similar, but independently
developed, algorithm was also used in this mock data challenge [29]. This algorithm was effectively the same as the
one described in this work but the author calculates the overlap between points explicitly, instead of using the metric
approximation as in this work. While this will more accurately determine the overlap, especially for overlaps not close
to unity, it will come at considerable additional computational cost.

A. Choice of coordinate system

Begin by choosing a suitable coordinate system on the signal manifold. The masses m1 and m2 of the component
stars are the most obvious coordinates on the manifold. However, when one uses masses as the coordinate system the
determinant of the metric will vary significantly over this parameter space [15]. Because of this a much higher density
of templates is needed in the low mass region than in the high mass region.
A better coordinate system is chirp times [11], defined by

θ1 =
5

128ν
(πMfL)

−5/3
, θ2 =

−π

4ν
(πMfL)

−2/3
(4.1)

τ0 =
θ1

2πfL
, τ3 =

θ2
2πfL

. (4.2)

Using this coordinate system the determinant of the metric does not vary much over this parameter space. This can be
illustrated by looking at the distribution of templates in both coordinate-systems as shown in Figure 8. The algorithm
used in this case [18] places templates first along the m1 = m2 curve (the lower right boundary in the left panel and
upper left boundary in the right panel). This is dictated by the fact that the region below the equal-masses curve
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FIG. 8: The distribution of templates placed by the hexagonal lattice algorithm in (τ0, τ3) coordinates (left panel)
and the same templates in (m1, m2) coordinates (right panel). Clearly, the distribution is highly skewed in the

latter coordinates.

FIG. 9: The number of templates as a function of the number of random trial points is shown when the trial points
are assigned uniformly in (τ0, τ3). coordinates as well as uniformly in (m1, m2) coordinates.

(in τ0,τ3 coordinates) corresponds to binaries with imaginary component masses1. The algorithm uses a hexagonal
placement over the rest of the parameter space.

B. Comparison of stochastic lattice with a square lattice

Let us now compare the stochastically generated template bank with a hexagonal lattice and with a square lattice.
In this case the template banks are created to cover binary compact objects whose components have a mass range of 1
to 10 solar masses such that any real signal within this range of masses would have an “overlap” greater than 0.96 with
at least one of the templates in the bank. This overlap, defined by 1 −∆2, is calculated using the assumption made
in equation (3.2) and the metric defined in [17]. For the stochastic algorithm the trial points are placed uniformly
in (τ0, τ3) coordinates (and limited by the restrictions on the masses). This is also compared to trial points placed
uniformly in (m1, m2) coordinates.
For this choice of parameters and for trial points placed uniformly in both coordinate systems, the number of

1 Although the waveform, which depends only on the total mass M and mass ratio ν which are real in that region, can be generated in

this part of the parameter space, it is unphysical and, therefore, not of any interest.
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FIG. 10: The distribution of stochastically generated templates in (τ0, τ3). coordinates (left panel) and in (m1, m2)
coordinates (right panel).

FIG. 11: The signals which had an overlap larger than 0.95 (gray crosses) as well as signals with an overlap less than
0.95 (black circles) in (m1, m2) coordinates (left) and (τ0, τ3) coordinates (middle). Also a histogram of the overlaps

of all injections with the stochastic template bank (right).

templates is plotted as a function of the number of trial points in Fig. 9. Fig. 10 shows the distribution of resultant
templates for both initial trial point distributions.
In this two-dimensional example, the stochastic algorithm, in both cases, converges at about 7500 templates. For

comparison, with the same range of masses a hexagonal lattice has 5914 templates and and a square lattice has 8353
templates. This may seem to be in conflict with the statement in section II that the stochastic algorithm performs
worse than hyper-cubic lattices in two dimensions. However, one must remember that the geometrical algorithm
used here begins by placing templates along the boundaries, which is quite inefficient. One also must remember that
though this parameter space is close to flat it is not flat.

C. Efficiency of the Stochastic bank

The quality or performance of a template bank can be assessed by measuring the overlap between randomly
simulated compact binary signals in the relevant range of parameters of the template bank in question. To test the
performance of the stochastic template banks, a set of 20,000 signals (standard post-Newtonian waveforms of type
TaylorT3 [30]) was generated and the maximum overlap of each over the entire template bank was calculated. In this
case templates with masses between 3 and 30 solar masses were used (a different mass range was used here to produce
less templates, thus making it easier to show the results graphically) and an overlap of 0.95 was used, equivalently,
∆2 = 0.05. The template bank was generated from 60,000 trial points placed uniformly in (τ0, τ3) coordinates.
The result of the test is shown in Fig. 11. One can see that the stochastic placement algorithm struggles to cover

certain areas of this parameter space. If a larger number of trial points had been used, the coverage would have been
better.
The areas of the parameter space with poor coverage from the stochastic template bank are in regions of the
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parameter space that are very thin, almost one-dimensional. The hexagonal and square lattices also have this difficulty
but they have been specifically designed to overcome this problem by placing templates along the boundary of the
space, especially along the m1 = m2 curve. A stochastic placement algorithm can overcome this problem in the same
manner, or by increasing the mass range of allowed templates. But both solutions come with the cost of additional
templates in the bank.

V. CONCLUSIONS

This paper presents a method for stochastically generating template banks in parameter spaces of arbitrary dimen-
sion and with arbitrary metrics. The relationship between coverage and the number of templates required to reach
that coverage has been investigated for dimensions up to 4. The performance of the stochastic placement algorithm
has been compared to lattice placement algorithms in flat spaces and was found to only be marginally less effective at
dimension less than 4. The area where we believe this algorithm would be of most use is in signal manifolds that have
a large intrinsic curvature, where lattice placement algorithms can not easily be applied. Stochastic banks which cover
less than 100% of the signal manifold may be useful for large dimensional manifolds, though further investigation is
needed to show that this is the case.
For cases where the number of required templates is very high, the algorithm will become very computationally

expensive. In these cases other “random template banks”, which do not use our filtering stage might become more
practical [20]. Nevertheless the stochastic template bank will provide better coverage for a given number of templates.
The construction of stochastic template banks can be made less expensive, however, by utilizing the fact that it is not
necessary to compute the distance between a trial point and every template in the bank. This is a topic of ongoing
investigation.
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