Protoplasma (2006) 227: 229-235
DOI 10.1007/s00709-005-0151-1

PROTOPLASMA

Printed in Austria

Profilin and Rop GTPases are localized at infection sites of plant cells
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Summary. We have found 5 profilin cDNAs in cultured parsley cells,
representing a small gene family of about 5 members in parsley. Specific
antibodies were produced using heterologously expressed parsley profilin
as antigen. Western blot analysis revealed the occurrence of similar
amounts of profilin in roots and green parts of parsley plants. Immunocy-
tochemical staining of parsley cells infected with the oomycetous plant
pathogen Phytophthora infestans clearly revealed that profilin accumu-
lates at the site on the plasma membrane subtending the oomycetous
appressorium, where the actin cables focus. We also observed the accu-
mulation of Rop GTPases around this site, which might point to a poten-
tial function in signaling to the cytoskeleton.

Keywords: Fungal infection; Plant defense; Cell polarization; Actin fila-
ment reorganization.

Introduction

In plants, the actin cytoskeleton performs essential tasks in
many cellular processes, including morphogenesis, cell di-
vision, and cytoplasmic streaming (Volkmann and Baluska
1999, Mathur and Hiilskamp 2002). Since plant cells are
immotile and encased by a rigid cell wall, dynamic actin
filament organization appears to be very important for the
targeted transportation of organelles and vesicles, and the
site-specific delivery of materials.

The remodeling of actin filament architecture is known
to be regulated by associated proteins that bind either to
monomeric or polymeric actin. One of the best character-
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ized examples of such proteins in plants is profilin
(Staiger etal. 1997). This abundant, low-molecular-mass
(12-15kDa) cytoplasmic protein has been identified in
all eukaryotic organisms studied. Several isoforms have
been found, also in plants, that appear to be differentially
expressed and are encoded by small multigene families
(Kandasamy et al. 2002). Profilin was originally character-
ized by its ability to bind in a 1:1 complex to monomeric
actin (Carlsson et al. 1977, Sun et al. 1995). However, its
role in regulating the organization of the actin cytoskeleton
is rather complex and not yet fully understood. It can ei-
ther promote or prevent actin polymerization depending
on the size of the globular-actin (G-actin) pool and the ratio
of this pool to profilin, as well as the differential coopera-
tion with a number of other actin-binding proteins, for in-
stance, actin-depolymerizing factor, 3-thymosin and formin
homology proteins (Ballweber et al. 1998). Profilins also
interact with other ligands in addition to actin: membrane
polyphosphoinositides and stretches of poly- or oligo-
L-proline in proline-rich proteins (Drobak etal. 2004).
These properties, particularly the binding to phosphatidyli-
nositol 4,5-bisphosphate (PIP,) resulting in dissociation of
profilactin, hint at a role for profilin in signal transduction;
indications for this have been found in animal and fungal
organisms (Schliiter et al. 1998). From all these data, one
might expect profilin to be concentrated at sites of highly
dynamic actin filaments.

Animal and fungal GTPases of the Rho family, compris-
ing Cdc42, Rac and Rho subfamilies, are well known for
their role as key regulators of the actin cytoskeleton (Hall
1998). Besides mediating alterations in actin dynamics
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and intracellular transport, they control, via activation of
protein kinase cascades, a broad range of physiological
changes, including gene transcription, cell cycle progres-
sion and production of reactive oxygen species (Ridley
2001). Recent data imply that plant Rho homologues may
have similar cellular functions (Valster et al. 2000, Zheng
and Yang 2000, Vernoud et al. 2003). Pollen tubes elongate
by tip growth, which is dependent on actin-filament-medi-
ated transport of secretory vesicles along the longitudinal
axis to the tip. Genetic evidence clearly shows that Rac-
type proteins have an essential function in polar growth
and act by controlling actin filament assembly (Kost et al.
1999). Furthermore, pollen tube Rac localizes to the
plasma membrane at the tip, where it physically associates
with a phosphatidylinositol monophosphate kinase activity
and colocalizes with PIP,, the specific product of this
enzyme reaction. Similarly, polar localization of Rop (Rac
of plants) GTPases was also found in Arabidopsis thaliana
root hair trichoblasts at sites of outgrowing root hairs, even
before budding (Molendijk et al. 2001), indicating involve-
ment in polar cytoskeletal reorganization. These data sug-
gest that small GTPases act by regulating site-directed
actin filament polymerization. This view was recently rein-
forced by the finding that ROPs activate two counteracting
pathways controlled by the ROP targets RIC3 and RIC4
(Fu etal. 2005, Gu et al. 2005). These pathways regulate
each other to control actin dynamics and cell morpho-
genesis, for example, tip growth in pollen tubes and inter-
digitating growth in pavement cells of the leaf epidermis.
Furthermore, small GTPases may function as molecular
switches mediating between membrane-receptor-based
perception of exogenous signals and their transduction to
the cytoskeleton in cooperation with the polyphosphate
inositol pathway and PIP,-actin-binding proteins, such as
profilin and actin-depolymerizing factor.

An excellent example of exogenously triggered induc-
tion of cytoskeleton polarization is the plant cell defense
response to fungal infection. An important component of
plant resistance to fungal pathogens is the formation of
localized wall thickenings at penetration sites, so-called
papilla, to prevent pathogen ingress (Schmelzer 2002).
This process comprises site-directed transport and secre-
tion of various materials which are deposited at the plant
cell wall beneath and around the fungal infection struc-
tures and involves reorientation of the actin filament
and microtubule architecture towards the penetration
site (Schmelzer 2002, Takemoto et al. 2003). We have
made intensive use of cultured parsley cells infected with
Phytophthora infestans as a model system to study the
plant defense response at the level of individual cells
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(Gross et al. 1993, Naton et al. 1996). Microscopic exami-
nation revealed that major features of the defense re-
sponse in this model system largely resemble the in planta
situation, including cytoplasmic and cytoskeletal reorga-
nization. Here we have studied the occurrence and ex-
pression of profilins in parsley and the accumulation of
profilin and Rop GTPases together with the formation of a
new actin focus at the penetration site.

Material and methods

Cultivation of plant cells and oomycetes

Suspension-cultured Petroselinum crispum cells were grown in HA
medium in constant darkness at 26 °C as described earlier (Kombrink
and Hahlbrock 1986). Phytophthora infestans mycelium was grown on
vegetable juice agar at 18 °C in the dark. Production of sporangia and
maturation and release of zoospores on rye agar was performed accord-
ing to the procedure described by Gross et al. (1993).

Cloning of parsley (P. crispum) profilins

Degenerate primers were derived from two profilin regions conserved
among plants (Christensen et al. 1996): primer 1, AAR TAY ATG GTI
ATI CAR GGI GA (amino acid sequence KYMVIQGE); primer 2
(reverse), TCI ACI ACC ATR TTR CAY TGI CC (amino acid sequence
GQCNMVVE). By using these primers for PCR with ¢cDNA from
cultured parsley cells as template, a respective profilin fragment was
amplified. The missing 3’ and 5" ends were completed by rapid amplifica-
tion of cDNA ends. The resulting clone was named PcPRFI. The
sequence was used to screen the cDNA library of cultured parsley cells
for other profilin-like sequences. In total, 30 profilin-like sequences were
found corresponding to 5 different profilin cDNAs named PcPRFI to
PcPRFS.

DNA sequencing

Sequencing was performed by the in-house DNA sequencing facility
on Applied Biosystems (Weiterstadt, Federal Republic of Germany) Abi
Prism 377 and 3700 sequencers using BigDye-terminator chemistry. Pre-
mixed reagents were from Applied Biosystems.

Generation and purification of antibodies

PcPRF1 was cloned into the pQE31 vector via BamHI/Pst] and trans-
formed into Escherichia coli to generate PcCPRF1-6 X His. Expression
and purification of the fusion protein was performed as described by
Robatzek and Somssich (2001). Briefly, heterologous expression was
induced by addition of IPTG to a 500 ml liquid culture of E. coli dur-
ing exponential growth. At an ODygy, of 2.0, cells were harvested by
centrifugation and lysed. PcPRF1-6 X His was purified from the lysate
using Ni-agarose affinity chromatography. The eluates from the Ni-
agarose column were checked for purity by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Protein bands were
cut out from the polyacrylamide gels, frozen in liquid nitrogen and
ground with a mortar and pestle to a fine powder. Immunization and
generation of antisera in rabbits was performed by Biogenes Inc.,
Berlin, Federal Republic of Germany. Antisera were tested with protein
extracts from parsley. The antiserum was affinity-purified using het-
erologously expressed PcPRF1 bound to Ni-agarose following the pro-
tocol of Gu et al. (1994).
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Western blot analysis

Parsley organs and tissues and suspension-cultured parsley cells were
ground in liquid nitrogen using a mortar and pestle. The powder was
resuspended in extraction buffer (sterile solution of 50 mM Tris-HCI,
pH 8.0, containing 150 mM NaCl, 10 mM EDTA, 0.1% SDS; just before
use, 20 ul of 200 mM permethylene sulfoxide [PMSF] in acetone
and 100 pl of 20% Triton-X 100 were added to 10 ml of this buffer).
Cell debris was removed by centrifugation at 10000 g for 30 min at 4 °C.
Aliquots of the supernatant or microsomal preparations were separated
by PAGE (10-15%) along with prestained molecular-weight markers
(SeeBlue; Invitrogen, Karlsruhe, Federal Republic of Germany). For
microsomal preparations, the tissue was ground at 4 °C with sand in
50 mM HEPES, pHS5, containing 0.5M sucrose, 6 mg of polyvinyl
polypyrrolidine per ml, 5mM ascorbic acid, and 1 mM dithiothreitol.
The homogenate was centrifuged at 7000 g. The supernatant was cen-
trifuged at 32000 g and 4 °C, and the resulting pellet was resuspended in
1 ml of 5mM K,H-H,PO, buffer, pH 7.8, containing 0.33 M sucrose,
and stored at —20 °C. Protein bands were transferred to nitrocellulose
membrane by electrophoretic blotting (Electro Eluter; Bio-Rad, Munich,
Federal Republic of Germany). Membranes were blocked with 2% (w/v)
milk powder (Neuform, Hamburg, Federal Republic of Germany) in
TBS (8% NaCl, 0.2% KCl, 3% Tris-HCI, pH 7.4) for 60 min at room
temperature and then incubated overnight at 4 °C with appropriate con-
centrations of primary antibodies (1:500 to 1:2000). After rinsing 3
times in milk powder—TBS, secondary antibodies labeled with alkaline
phosphatase (Sigma-Aldrich, Munich, Federal Republic of Germany)
were added (1:1000 dilution) and membranes were incubated for 2 h at
room temperature. After rinsing 3 times with TBS-T (phosphate-buffered
saline [PBS] with 0.1% Tween 20) and TBS, and once with water, the
blots were stained with 5-bromo-4-chloro-3-indolylphosphate toluidine
salt—nitro-blue tetrazolium chloride (Sigma-Aldrich) following the man-
ufacturer’s instructions. After the appearance of bands, the reaction was
stopped by the addition of deionised water.

Immunocytochemistry

Cultured parsley cells were infected with P. infestans on microscope
slides and subsequently immunocytochemically stained according to the
method of Gross etal. (1993). Affinity-purified anti-profilin antibodies
and affinity-purified antibodies against Rop4 from Arabidopsis thaliana
were used as primary antibodies (dilutions of 1:10 to 1:100 in bovine
serum albumin-PBS). In competition experiments, 1-10 g of purified,
heterologously expressed PcPRF1-6 X His was added to the primary
anti-profilin antibodies. The anti-Rop4 antibodies were kindly provided
by A. Molendijk. Secondary antibodies were diluted 1:200 in bovine
serum albumin—PBS for CY3-conjugated antibodies and 1: 150 for fluo-
rescein isothiocyanate-conjugated anti-rabbit immunoglobulin G anti-
bodies (Sigma-Aldrich). Slides were incubated with the antibody
solution for 1 h at 37 °C and then rinsed 3 times with PBS and 3 times
with microtubule-stabilizing buffer. The stained cells were inspected and
photographed with a Zeiss Axiophot light microscope equipped with epi-
fluorescence and a digital imaging system (JVC KY-F70 camera, Diskus
imaging software; Technisches Biiro Hilgers, Konigswinter, Federal Re-
public of Germany).

Results

Characterization and expression of profilins from
P. crispum

Using PCR technology with P. crispum cDNA as template
and degenerate primers, a cDNA fragment of profilin was

amplified. The fragment was subjected to rapid amplifica-
tion of cDNA ends and a full-length cDNA, PcPRF1, was
obtained.

Using this cDNA as a probe to screen a cDNA library
of suspension-cultured P. crispum cells, four additional
profilin cDNAs with very similar deduced amino acid se-
quences (GenBank accession nr. AY900012-AY900016)
were found. Employing DNA from cultured parsley cells
in Southern blot experiments with PcCPRF]1 as the probe, 3
to 5 major bands were detected under moderate strin-
gency. Thus, the parsley profilins constitute a small gene
family of about 5 members.

Specific antibodies were generated against heterologously
expressed PcPRF1 and affinity purified. These antibodies
recognized purified, heterologously expressed PcPRF1 on
Western blots (Fig. 1, lane 2) and a band corresponding to
the molecular mass of profilin, about 14 kDa, was detected
by Western blot analysis of extracts from cultured parsley
cells, as well as from leaves and roots of parsley plants
(Fig. 1, lanes 3-5). The preimmune serum control displayed
no signals (Fig. 1, lane 1). The parsley profilin isoforms
show high homology among themselves (87-98%) and with
the profilins from Arabidopsis thaliana (85-91%). There is
also considerable homology (44-48%) with the mouse and
human profilins. Thus, the antibodies against PCPRF1 most
probably do not discriminate between isoforms. Irrespective
of isoforms, profilins were found to be expressed at similar
levels in terrestrial and aerial parts of parsley plants. Consid-
erably higher levels were found in maturing pollen by
immunohistochemical staining of flower bud sections (data
not shown).

< 62kDa
| € 49kDa

| @ 4 38kDa
M < 28LkDa

-_-nd—lsma

<« 1kDa

8 - -

Fig. 1. Western blot analysis using preimmune serum and anti-profilin
and anti-Rop-GTPase antibodies. Protein extracts from cultured parsley
cells were incubated with preimmune serum (/), purified recombinant
profilin (2), and protein extracts from cultured parsley cells (3), parsley
leaves (4), and roots (5) were incubated with the anti-profilin antibodies,
and a microsomal preparation from cultured parsley cells was incubated
with the anti-Rop4 (A. thaliana) antibodies (6). Prestained protein mark-
ers for the indicated molecular masses were coseparated and blotted (7)

'4— 6 kDa
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Cellular redistribution of actin, profilin, and Rop-GTPase
upon pathogen infection

Cultured parsley cells were infected with the oomycetous
plant pathogen P. infestans to study the induced changes in
cellular organization of the actin cytoskeleton and its bind-
ing protein profilin, as well as the potential signaling com-
ponent Rop GTPase, by immunocytochemistry. During co-
cultivation of P. infestans germlings and cultured parsley
cells on microscopic slides, the growing germ tube of the
pathogen contacts and attaches to cells through the forma-
tion of an appressorium and subsequently penetrates the
cell wall. Upon attachment and penetration, the plant cell
reorients actin filaments towards the area of the plasma
membrane beneath the appressorium of the pathogen
(Fig. 2A, B). As seen in Fig. 2C and D, strong accumula-
tion of profilin was found both at the infection site and

in the plant cell nucleus. To verify the specificity of the
immunocytochemical staining and the redistribution of
profilin, we performed a number of control experiments
(Fig. 3). When infected cultured parsley cells were incu-
bated with Cy3 fluorescently labeled secondary antibodies
alone, no fluorescence was detectable (Fig.3A, B) and
only weak, unspecific fluorescent labeling was observed
after staining with the preimmune serum (Fig. 3E, F). The
strong staining of nuclei was also seen in uninfected cells
incubated with the anti-profilin antibodies (Fig.3C, D).
Addition of purified, heterologously expressed PcPRF1 to
the infected cells drastically decreased the immunostaining
at the infection site and of the nucleus by competing with
the cellular profilin for the antibody (Fig. 3G, H). Thus,
the accumulation of profilin at the infection site appeared
to be specific and correlated with the reorientation of actin
filaments towards this site.

Fig. 2 A-F. Immunocytological localization
of actin, profilin, and Rop GTPase in in-
fected cultured parsley cells. Cultured pars-
ley cells were infected with P. infestans on
microscope slides and then immunocyto-
chemically stained with primary antibodies
specific for actin (A and B), profilin (C and
D) and A. thaliana Rop4 (E and F), and Cy3
fluorescently labeled secondary antibodies.
Panels A, C, and E are bright-field images of
the respective fluorescence images B, D, and
F. af Actin filament; ik infection hypha; nu
nucleus; ps penetration site. Bar: 20 pm
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Fig. 3A-H. Immunocytochemical control experiments with cultured
parsley cells. A and B Infected cells incubated with secondary Cy3 fluo-
rescently labeled antibodies only; C and D noninfected cells stained with
anti-profilin antibodies and Cy3 fluorescently labeled secondary antibod-
ies; E and F infected cells stained with preimmune serum and Cy3 fluo-
rescently labeled secondary antibodies; G and H infected cells stained
with anti-profilin antibodies in the presence of 10 pg of purified recom-
binant profilin and Cy3 fluorescently labeled secondary antibodies. Pan-
els A, C, E, and G are bright-field images of the respective fluorescence
images B, D, F, and H. ik Infection hypha; nu nucleus; ps penetration
site. Bar: 20 pm

The potential involvement of small GTPases in the de-
fense mechanism was investigated using antibodies against
Rop4 from A. thaliana. First, the cross-reactivity of these
antibodies with parsley proteins was tested in Western
blots. In protein extracts of parsley microsomal fractions,
one single band at a molecular mass of about 18 kDa, cor-
responding to the molecular mass of monomeric Rop, was
detected (Fig. 1). Immunocytochemical staining of infected

parsley cells with the anti-Rop4 antibodies showed weak
but significant staining at the plasma membrane, especially
at the infection site, where a halo of antibody fluorescence
was observed around the invading hyphae (Fig. 2E, F).

Discussion

Profilins have been found in all eukaryotic organisms and
appear to be ubiquitously expressed, indicating essential
functions. In plants, profilins are encoded by small gene fam-
ilies of about 5 members (Staiger etal. 1993, Mittermann
etal. 1995, Huang etal. 1996). Similarly, our screening of
a cDNA library and Southern blot analysis indicated the
presence of up to 5 profilin genes in parsley. We found pro-
filins throughout the whole plant with increased concentra-
tions in maturing pollen of flowers, which is also typical
for other plants (Christensen et al. 1996). Plant profilins were
first identified as the major allergen in pollen (Valenta et al.
1991).

With respect to intracellular localization in plants, pro-
filins are normally equally distributed within the cyto-
plasm, but they are often also found within the nucleus
(Braun etal. 1999, Holzinger etal. 2000, Valster et al.
2003). When we overexpressed profilin (PcPRF1) as a
GFP-fusion protein (C-terminal or N-terminal) in parsley
protoplasts, the cytoplasm and nucleus displayed intense
GFP fluorescence; however, cytoplasmic strands could
no longer be observed. Coexpression of profilin-RFP and
talin-GFP for fluorescent tagging of actin filaments
showed the lack of transversal actin filaments and cyto-
plasmic strands in protoplasts (data not shown). These re-
sults confirm earlier reports that microinjection of profilin
into plant cells results in the disappearance of cytoplasmic
strands and transversal actin filament bundles (Staiger
etal. 1994, Valster et al. 1997). Thus, the artificial eleva-
tion of the apparent cytoplasmic concentration of profilin
clearly leads to the depolymerization of actin filaments and
drastic disturbance of cytoplasmic morphology and dy-
namics, as a consequence of its sequestering function. The
function of nuclear profilin is unknown, although it has
been speculated that it might be involved in signal trans-
duction cascades between the nucleus and cytoplasm
(Baluska et al. 2001). Our results show that, upon fungal or
oomycete infection and the consequent induction of actin
filament polarization, profilin localizes to the actin focus
at the plasma membrane beneath the site of cell wall pen-
etration. In quite a number of publications, similar concen-
trations of profilin were found in cytoplasmic areas with
high actin filament dynamics, such as the cell cortex,
filopodia and focal adhesions in Acanthamoeba castellani,
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Schizosaccharomyces pombe, and mammalian cells (re-
viewed in Schliiter et al. 1998). In plants, profilin is codis-
tributed with the apical actin cap in growing root hairs and
is specifically localized in the bulge during root hair initia-
tion and subsequently forms a weak tip-to-base gradient in
the elongating root hairs (Baluska et al. 2000). However, in
another tip-growing plant cell, the pollen tube, profilin was
found to be rather homogeneously distributed and not con-
centrated at the tip (Vidali and Hepler 1997), and no spe-
cific localization of profilin was found in the phragmoplast
of dividing plant cells, which contains a dense array of
actin filaments (Valster etal. 2003). Similarly, in other
studies employing microinjection of fluorescently labeled
profilin into Acanthamoeba castellanii and mammalian tis-
sue culture cells, profilin was not found to colocalize with
actin filaments (Tarachandani and Wang 1996, Kaiser et al.
1999). The source of these conflicting results is presently
unclear. From our control experiments, in which only sec-
ondary antibodies or preimmune serum were applied, we
can rule out that the fluorescence labeling at the penetra-
tion site is simply caused by autofluorescence of cytoplas-
mic aggregates or unspecific antibody staining. In an
earlier publication, we showed that cultured parsley cells
exhibit a bright blue autofluorescence at infection sites
upon UV-light excitation (330-390 nm), while other exci-
tation wavelengths, for instance, the green light used here
for Cy3 excitation, have no effect (Naton et al. 1996). The
staining of nuclei in noninfected cells with the anti-profilin
antibodies indicates a constitutive localization of profilin in
this organelle. As we were able to substantially reduce the
staining at the penetration site and in the nucleus by
adding purified, heterologously expressed profilin to the
anti-profilin antibodies, the labeling at these sites must be
regarded as true accumulation of profilin.

In outgrowing root hair bulges, elevated levels of PIP,,
a potential ligand of profilin, were found using specific anti-
PIP, antibodies for immunocytochemical localization (Braun
etal. 1999). In experiments with similar commercially avail-
able antibodies, we observed staining of nuclei in parsley
cells but not around the penetration site (data not shown).
However, it was unclear whether this was due to experimen-
tal differences, such as the fixation conditions for optimal
membrane preservation. Nuclear localization of PIP, has
been clearly shown for mammalian cells (Martelli et al.
1995, Boronenkov etal. 1998, Osborne etal. 2001). The
process of root hair initiation shows striking similarities in
various aspects to fungal-infection-induced cellular reorgani-
zation (Schmelzer 2002). As in the cellular defense response
to fungal invasion, the cell creates a special microcompart-
ment at the cell wall, which involves site-directed reorienta-
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tion of actin filaments and microfilament-dependent transport
processes for cell wall construction and fortification. These
similarities suggest that various exogenous or endogenous
triggers might induce a similar program leading to cellular
polarization. Our observations of Rop GTPases accumulating
around the penetration site, i.e., the site of polarization, as in
the process of root hair initiation (Molendijk et al. 2001), are
in line with this assumption. The activity of Rop GTPases in
plant cell polarization could probably be linked to actin cy-
toskeleton reorganization; however, this has yet to be proven.
It is already clear that small GTPases play a crucial role in
plant defense responses, such as the generation of reactive
oxygen species (oxidative burst), expression of defense-re-
lated genes, and production of phytoalexins (Ono et al. 2001,
Wong et al. 2004). In a recent study of the defense response
of barley to the biotrophic powdery mildew fungus Blumeria
graminis f. sp. hordei, it was shown that actin cytoskeleton
polarization to sites of attempted fungal penetration is modu-
lated by the receptor-like transmembrane protein MLO and
the RAC/ROP family G protein RACB (Opalski et al. 2005).
Interestingly, in susceptible interactions of barley and
B. graminis f. sp. hordei, members of the ROP G protein
family were found to be important for pathogen access and,
hence, establishment of disease (Schultheiss et al. 2003). Ap-
parently, in cases of nonrecognition and impaired defense,
pathogenic fungi take advantage of GTPase functions for the
establishment of biotrophy. Thus, components of the signal-
ing pathway to the actin cytoskeleton might be involved in a
complex network concerned with the sensing of exogenous
triggers and resulting in a variety of potential physiological
answers and dynamic morphological changes.
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