Triana - A Quicklook Data Analysis System For Gravita-
tional Wave Detectors

Ian Taylor! Bernard Schutz?

I Department of Physics and Astronomy, University of Wales Cardiff, PO BOX 913,
Cardiff, Wales, UK

2 Albert Einstein Institute, Maz Planck Institute for Gravitational Physics, Schlaatzweg
1, Potsdam, Germany

Abstract. In this paper, we present an overview of the Triana OCL (object connect-
ing language) data analysis environment. Triana is an extension of Grid, introduced
last year, that allows users to interactively build complex data processing systems by
selecting a set of desired tools and connecting them together graphically.

1 Introduction

Signal-processing systems are becoming an essential tool within the scientific
community. This is primarily due to the need for constructing large complex
algorithms which would take many hours of work to code using conventional
programming languages. Triana (Object Connecting Language) is a graphical
interactive multi-threaded environment allowing users to construct complex al-
gorithms by creating an object-oriented block diagram of the analysis required.

2 An Overview

When Trianais run three windows are displayed. A ToolBoz window, a Mawn Tri-
ana window and a Dustbin window (to discard unwanted units). Figure 1 shows
the ToolBox window which is divided into two sections. The top section shows
the available toolboxes (found by scanning the toolbox paths specified in the
Setup menu) and the bottom shows the selected toolbox’s contents. Toolboxes
(and associated tools) can be stored on a local server or distributed throughout
several network servers. Simply adding the local or http address in the toolbox
and tool path setup allows on-the-fly access to other people’s tools.

Units are created by dragging a unit’s icon from the ToolBox window and
dropping 1t at the desired position in the MainTriana window. Units are then
connected together by dragging from an output socket on a sending unit to an
input socket of the receiving unit. Algorithms are run by clicking on the start
button (see Figure 2) located at the bottom right-hand side of this window.
Algorithms can be run in one of three modes : in a single step fashion (i.e.
one step at a time); continuously (i.e. each unit running continuously) or in

rﬂ Toolbox1

Window Update ToolBox Unit Help

_ Algorithms | Applications| Converters | Demos | InputUniis ||~

OutpuiUnits| CalcDemos ~ Comms | ImagProc | Image |
Animation | Maths | Logic | SunAudio | DTPTools || |

A |
Adder | Subtmcter = Divider | Multipier |~ Power ||
Sqt | Lm | Exp | Magnimde | Abs |
Recip | Square | Sine | Simh | ArcSin |
ArcSith | Cosine | Cosh | ArcCos | ArcCosh |
Tangent | Tanh | ArcTan | ArcTanh | ATanCont |
Phase | PhaseCont RawToSSet RawToSSet

]]

Figure 1: Triana’s ToolBox window. Toolboxes can be organised in a similar
way to files in a standard file manager.

continuous step mode where the units are run continuously but synchronised at
each time step.

2.1 Overview of the Toolboxes

The following toolboxes are currently available within Triana :-

e Algorithms : this contains a number of signal processing routines e.g.
FFTs, amplitude and power spectral algorithms, averagering and statstical
units, noise adders (i.e.Gaussian), complex number routines, automatic
number padders and frequency low- and high-pass filters.

o Applications : this currently contains MathCalc (see section 4) but it will
later be used to incorporate other applications into Triana.

e (Converters : converting units allow the user to convert between the
various types within the Triana system. For example, a user could load in
a set of raw samples using the Importer unit (i.e. into RawData object)
and then pass this RawData into a RawToSSet unit in order to specify
the sampling rate and add a description etc.

e Demos : various demos of connected networks (i.e. groups) within Triana.
Used to demonstrate to users how the various units are connected together.

We also have another demo toolbox, called CalcDemos. This contains
examples of using and connecting the MathCalc unit within networks.

InputUnits : these are units which generate data somehow or import data
into Triana from other sources e.g. files. We have wave generators, text
and binary importers, 2-dimensional data set importers and generators
and a unit to generate a constant (useful for setting parameters for other
units).

OutputUnits : these are units which output data somehow or display
data. Here we have text and binary exporters, 2-dimensional graphical
displayers, a Grapher (for displaying sample set’s and spectra) and viewers
for constants (a simple text field view) and text (i.e. via an editor we’ve

created called Ved).

Comms : consist of units (Client and Server) which allow two versions
of Triana to communicate with each other via internet sockets and a unit
(Fzec) which can run and communicate with any executable . Exec com-
municates with executables by using standard input and output streams.

ImagProc : contains various image processing algorithms. There ex-
ist units which can alter the brightness, colour intensities, convert from
colour to black and white, edge detection, contrast enhancers, blurrers,
convolvers, image adders and subtracters, image negaters etc.

Image : consist of a set of tools which allow the loading in and displaying

of GIF or JPEG files.

Animation : here we have a set of tools which allow you to animate a set
of GIF or JPEG files and control the animation speed.

Maths : consists of a set of standard mathematical functions which work
on the various types within Triana e.g. Ln, Sqrt, Exp, Magnitude, Square,
Sine, Sinh, ArcCos etc.

Logic : currently just contains an If unit which tests its first input and
routes the second input to either the first or the second output according
to the outcome of the test. Other logic units are planned for the final
release of Triana.

SunAudio : contains a demo unit which allows users to speak or sing (1)
into their Sun workstation have this input into Triana.

DTPTools : these are a set of tools which allow a number of desk-top
publishing tasks to be performed within Triana. There is a general way
of producing listings of files (using wildcards) throughout subdirectories.
This means that you can process all matching files with any of the tools

!

fﬂ Triana V. 1.0 alpha: MainTrianal

indew Update Edit Debug Setup Helpl

MathCalcl +_| |—¢ MathCalc2 +_| |-‘ Grapherl J
L‘RawToSSetl+—| I—c FFTASpect j——l

.|

ﬂ el Smrr| Smp| Pau.s'e|

4
Y

Reget | FPanic | Rezumes |

Mode Single Skep —

3

Figure 2: A snapshot of Triana’s programming window.

within this toolbox. For example, you could count the lines of all the
Java code within a source directory and all its subdirectories, change all
occurances of one word with another or even list files (with line numbers)
of all files containing a phrase (like grep).

New Features Of Triana

Groups of units can now be saved along with their respective parameters. Such
groups can also contain groups, which can contain other groups and so on. This
is a very powerful feature which allows the programmer to hide the complexity
of programs and use groups as if they were simply units themselves. Many
improvements have been made to the graphical interface, including compacting
the look and style of the toolbox, adding a snap-to cable layout and many more
informative windows. The major change however, is that now Triana consists

of an

object connecting language (OCL) and a separate user interface. This

means that the units can be run from within the user interface or as a stand-

alone

program.

T MathCalcl

window Update Unit Help

Foptimise 7 dShow Debug Window ?
7 Show The Optimised Exprassion ?

Type in your mathematical erpression

| sinlilsequence(S12)#2)*pi+0,125)

Optimised Expression

| (Sinlti(2*P1*0.125)*(Sequencel51 21T

) OK|

Figure 3: MathCalcl’s parameter window

4 MathCalc

The MathCalc unit interprets, optimises and evaluates arithmetic expressions
using stream-oriented arithmetic. It recognises a large number of functions and
constants. It can be used to evaluate scalar expressions, to process input data
sets, or to generate output data sets. All calculations are performed in double-
precision real arithmetic.

Stream-oriented arithmetic can be defined as the application of an arith-
metic expression to each element of a stream independently. Thus, if B is
the sequence 01,62, .., bn, then the function sin(B) evaluates to the sequence
sin(bl), sin(b2), ..., sin(bn). MathCalc distinguishes between constants and se-
quences or sets. Sets (data sets) are sequences of numbers and constants are
single numbers, essentially sequences of length 1. In a MathCalc expression
the two can be mixed very freely, with the restriction that all sequences must
have the same length. Sequences or constants can be obtained from the input
nodes of the MathCalc unit. The example given in the MainTriana window (see
Figure 2) demonstrates the flexibility of the MathCalc unit.

The first MathCalc unit creates a 125 Hz sine wave by using the equation
sin(((sequence(512)*2)* PI)%0.125) where the sample rate is 1kHz (MathCalc
will optimise this to sin[(2*¥PT*0.125) * sequence(512)], see Figure 3). Math-
Calc’s user interface allows users to type in any mathematical expression. This
expression is then optimised (when the user hits return) and the optimised ex-
pression then appears in the bottom text field. The user can choose to show
the optimised expression or to hide it (see Figure 5 for the MathCalc parameter
window without the optimised expression shown.)

This sine wave is then transformed into a SampleSet type by adding its

T RawToSSetl

wWindow Update Unit Help

Sampling Frequency ; I s1d

Titme stamp : IEFri Dec 19 143447 GMT4+00:00 19937

Description

[Data from RawToSSetl

2 e

(8]

Figure 4: RawToSSet1’s parameter window

i MathCalc2

Window Update Unit Help

T optimise 2 dShow Debug Window ?
AShow The Optimised Expression ?

Type in your mathematical expression

| gaussian(512) + #04 |

Figure 5: MathCalc2’s parameter window

sampling frequency (i.e. 1 kHz) within the RawToSSet unit (RawToSSetl, see
its parameter window within Figure 4).

The second MathCalc unit adds Gaussian noise to its input (i.e. by typing
gaussian(b12)+4#0s in MathCalc2’s parameter window, see Figure 5) The #0
means node 0 and the s means that it is a sequence as opposed to a ¢ which
would a constant.

This noisy signal is then passed to the FFTASpect group (see Figure 6). This
group consists of an FFT unit (FFT1) and a unit which converts the complex
set of data, generated by the FFT, to an amplitude spectrum (AmpSpectl)

Groups, such as the FFTASpect can be created very easily within Triana.
Simply by choosing the units to group and selecting Group from the Edit menu
or from a pop-up menu will group the units and create a Group edit window
for them. This can be performed again within the group edit windows to have
groups of units within groups of units and so on. Very complex algorithms
can be created and broken down in this way. This amplitude spectrum is then
displayed by Grapherl (see Figure 7).

Once the signal 1s displayed, it can be investigated further by using one of
the Grapher’s various zooming facilities or displayed differently by choosing one

MaihCalc2 Grmapherl

FFTASpect

iThe FFT and AmpSpect in one Group E‘

=l

Figure 6: The internal structure of FFTASpect’s group. The outside units
(mathCalc2 and Grapherl) are simply labels indicating which units they are
connected to in the next level up i.e. within the MainTriana window (see Fig-

ure 2)

Figure 7: Grapherl’s output

rﬂ Grapheri

Window Update Unit Help |
Input Mode Calour Line Type
1 = | black — | continuous — |

Figure 8: Grapher’s parameter window

combination of line styles or colours. Any grapher can simultaneously display
many signals (up to 20 nominally) each with its own colour and line style. This
can be set using the Grapher’s parameter window shown in Figure 8 below.
Each input node to the grapher can be displayed in one of thirteen different
colours and in one of three different line styles : continuous (as in Figure 7),
scattered (i.e. just dots for each point) or impulse (vertical lines from the point
to the x-axis).

Zooming can be controlled via a zoom window which allows specific ranges
to be set (see Figure 9) or by simply using the mouse to drag throughout the
image. For example, by holding the control key down and dragging down the
image is zoomed in vertically and by dragging across from left to right zoomed
in horizontally. The reverse operations allow zooming out. Also once zoomed
in, by holding the shift key and the control key down the mouse can be used
to move around the particular area you are interested in. We also have another
powerful zooming function which literally allows the user to drag to the position
of interest and the image will zoom in accordingly.

Using the zoom window, precise zoom regions can be specified by inserting
the desired ranges in the top four (north, east, south and west) textfield boxes.
There are options to retain the current zoom ranges when displaying further
images and to specify which directions you want to zoom into. These take effect
when the mouse-dragging functions are used. The two buttons at the bottom
allow the user to zoom into 50% of the image (Half Size) or to return to the
full size of the image (Full Size). Other useful features of the Grapher are to be
able to change the distance between ticks and to view the data logarithmically
in either vertical or horizontal directions.

5 Current Version Of Triana

Triana originated from an implementation of the system using C++ and Inter-
Views [1] but was abandoned in early 1996. Version two [2] was written using
the Java Development Kit, JDK 1.0.2 but this was updated in order to be com-
patible with the new JDK 1.1.x kit. We also re-implemented the base classes

rl‘ Zooming Options for Grapheri -

Window Update Help |

Zooming Values

(Edit a TextField to alter Zoom)

|E0.5041 57058

[0 [100

0.001806507

i

Optiohs

o Retain Current Zoom 7

Wertical Zooming Zoom Both —
Horizontal Zooming Zoom Both —
Half Size Full size

Figure 9: Grapher’s zoom window.

and created OCL. This version of the software was called Grid OCL [3] but in
November 1997 we changed its name to Triana which is now a UK trademark.
It is a late alpha version and all information relating to the software can be
found on the internet site, http://www.astro.cf ac.uk/Triana/. Triana OCL will
be entering its beta testing stage early 1998 followed by a final version shortly
after. We are in the process of being able to provide a commercial version of the
software for which support can be given. None-the-less we will always provide
it in a free downloadable from the WWW with a certain time limit (3 or 4
months) and to the gravitational-wave community. Our main goal is to create
a very wide user base and get people involved in writing and using there own
units as well as our own.

So far, collaborators are working on tools for various signal and image prob-
lems, multimedia teaching aids and even to construct a musical composition
system.

References

[1] Taylor I. J., & Schutz B. F.; 1995. The Grid Musical-Signal Processing System,
International Computer Music Conference, p. 371-371.

[2] Taylor I. J. & Schutz B. F.; 1996. The Grid Signal Processing System. Astronom-
ical Data analysis Software and Systems VI, p. 18-21.

[3] Taylor I. J. & Schutz B. F., 1997. Grid OCL : A Graphical Object Connecting
Language. Astronomical Data analysis Software and Systems VI, p. 18-21.

