282 research outputs found

    Diagnosis and classification of pediatric acute appendicitis by artificial intelligence methods: An investigator-independent approach

    Get PDF
    Acute appendicitis is one of the major causes for emergency surgery in childhood and adolescence. Appendectomy is still the therapy of choice, but conservative strategies are increasingly being studied for uncomplicated inflammation. Diagnosis of acute appendicitis remains challenging, especially due to the frequently unspecific clinical picture. Inflammatory blood markers and imaging methods like ultrasound are limited as they have to be interpreted by experts and still do not offer sufficient diagnostic certainty. This study presents a method for automatic diagnosis of appendicitis as well as the differentiation between complicated and uncomplicated inflammation using values/parameters which are routinely and unbiasedly obtained for each patient with suspected appendicitis. We analyzed full blood counts, c-reactive protein (CRP) and appendiceal diameters in ultrasound investigations corresponding to children and adolescents aged 0–17 years from a hospital based population in Berlin, Germany. A total of 590 patients (473 patients with appendicitis in histopathology and 117 with negative histopathological findings) were analyzed retrospectively with modern algorithms from machine learning (ML) and artificial intelligence (AI). The discovery of informative parameters (biomarker signatures) and training of the classification model were done with a maximum of 35% of the patients. The remaining minimum 65% of patients were used for validation. At clinical relevant cut-off points the accuracy of the biomarker signature for diagnosis of appendicitis was 90% (93% sensitivity, 67% specificity), while the accuracy to correctly identify complicated inflammation was 51% (95% sensitivity, 33% specificity) on validation data. Such a test would be capable to prevent two out of three patients without appendicitis from useless surgery as well as one out of three patients with uncomplicated appendicitis. The presented method has the potential to change today’s therapeutic approach for appendicitis and demonstrates the capability of algorithms from AI and ML to significantly improve diagnostics even based on routine diagnostic parameters

    Thomson scattering above solar active regions and an ad-hoc polarization correction method for the emissive corona

    Get PDF
    Thomson scattered photospheric light is the dominant constituent of the lower solar corona's spectral continuum viewed off-limb at optical wavelengths. Known as the K-corona, it is also linearly polarized. We investigate the possibility of using the a priori polarized characteristics of the K-corona, together with polarized emission lines, to measure and correct instrument-induced polarized crosstalk. First, we derive the Stokes parameters of Thomson scattering of unpolarized light in an irreducible spherical tensor formalism. This allows forward synthesis of the Thomson scattered signal for the more complex scenario of symmetry-breaking features in the incident radiation field, which could limit the accuracy of our proposed technique. For this, we make use of an advanced 3D radiative magnetohydrodynamic coronal model. Together with synthesized polarized signals in the Fe XIII 10746 Angstrom emission line, we find that an ad hoc correction of telescope and instrument-induced polarization crosstalk is possible under the assumption of a non-depolarizing optical system.Comment: Accepted for publication in Ap

    Electron interaction with domain walls in antiferromagnetically coupled multilayers

    Full text link
    For antiferromagnetically coupled Fe/Cr multilayers the low field contribution to the resistivity, which is caused by the domain walls, is strongly enhanced at low temperatures. The low temperature resistivity varies according to a power law with the exponent about 0.7 to 1. This behavior can not be explained assuming ballistic electron transport through the domain walls. It is necessary to invoke the suppression of anti-localization effects (positive quantum correction to conductivity) by the nonuniform gauge fields caused by the domain walls.Comment: 5 pages with 3 figure

    Rac1-Regulated Endothelial Radiation Response Stimulates Extravasation and Metastasis That Can Be Blocked by HMG-CoA Reductase Inhibitors

    Get PDF
    Radiotherapy (RT) plays a key role in cancer treatment. Although the benefit of ionizing radiation (IR) is well established, some findings raise the possibility that irradiation of the primary tumor not only triggers a killing response but also increases the metastatic potential of surviving tumor cells. Here we addressed the question of whether irradiation of normal cells outside of the primary tumor augments metastasis by stimulating the extravasation of circulating tumor cells. We show that IR exposure of human endothelial cells (EC), tumor cells (TC) or both increases TC-EC adhesion in vitro. IR-stimulated TC-EC adhesion was blocked by the HMG-CoA reductase inhibitor lovastatin. Glycyrrhizic acid from liquorice root, which acts as a Sialyl-Lewis X mimetic drug, and the Rac1 inhibitor NSC23766 also reduced TC-EC adhesion. To examine the in vivo relevance of these findings, tumorigenic cells were injected into the tail vein of immunodeficient mice followed by total body irradiation (TBI). The data obtained show that TBI dramatically enhances tumor cell extravasation and lung metastasis. This pro-metastatic radiation effect was blocked by pre-treating mice with lovastatin, glycyrrhizic acid or NSC23766. TBI of mice prior to tumor cell transplantation also stimulated metastasis, which was again blocked by lovastatin. The data point to a pro-metastatic trans-effect of RT, which likely rests on the endothelial radiation response promoting the extravasation of circulating tumor cells. Administration of the widely used lipid-lowering drug lovastatin prior to irradiation counteracts this process, likely by suppressing Rac1-regulated E-selectin expression following irradiation. The data support the concern that radiation exposure might increase the extravasation of circulating tumor cells and recommend co-administration of lipid-lowering drugs to avoid this adverse effect of ionizing radiation

    Generation of annotated multimodal ground truth datasets for abdominal medical image registration

    Full text link
    Sparsity of annotated data is a major limitation in medical image processing tasks such as registration. Registered multimodal image data are essential for the diagnosis of medical conditions and the success of interventional medical procedures. To overcome the shortage of data, we present a method that allows the generation of annotated multimodal 4D datasets. We use a CycleGAN network architecture to generate multimodal synthetic data from the 4D extended cardiac-torso (XCAT) phantom and real patient data. Organ masks are provided by the XCAT phantom, therefore the generated dataset can serve as ground truth for image segmentation and registration. Realistic simulation of respiration and heartbeat is possible within the XCAT framework. To underline the usability as a registration ground truth, a proof of principle registration is performed. Compared to real patient data, the synthetic data showed good agreement regarding the image voxel intensity distribution and the noise characteristics. The generated T1-weighted magnetic resonance imaging (MRI), computed tomography (CT), and cone beam CT (CBCT) images are inherently co-registered. Thus, the synthetic dataset allowed us to optimize registration parameters of a multimodal non-rigid registration, utilizing liver organ masks for evaluation. Our proposed framework provides not only annotated but also multimodal synthetic data which can serve as a ground truth for various tasks in medical imaging processing. We demonstrated the applicability of synthetic data for the development of multimodal medical image registration algorithms.Comment: 12 pages, 5 figures. This work has been published in the International Journal of Computer Assisted Radiology and Surgery volum

    The existence of the Lambda effect in the solar convection zone indicated by SDO observations

    Full text link
    The empirical finding with data from the Solar Dynamics Observatory (SDO) of positive (negative) horizontal Reynolds stress at the northern (southern) hemisphere for solar giant cells (Hathaway et al. 2013) is discussed for its consequences for the theory of the solar/stellar differential rotation. Solving the nonlinear Reynolds equation for the angular velocity under neglect of the meridional circulation we show that the horizontal Reynolds stress of the northern hemisphere is always negative at the surface but it is positive in the bulk of the solar convection zone by the action of the Lambda effect. The Lambda effect, which describes the angular momentum transport of rigidly rotating anisotropic turbulence and which avoids a rigid-body rotation of the convection zones, is in horizontal direction of cubic power in the rotation rate Ω\Omega and it is always equatorwards directed. Theories without Lambda effect which may also provide the observed solar rotation law only by the action of a meridional circulation lead to a horizontal Reynolds stress with the opposite sign as observed.Comment: 4 pages, 6 figure

    Structural Invariance of Sunspot Umbrae Over the Solar Cycle: 1993-2004

    Full text link
    Measurements of maximum magnetic flux, minimum intensity, and size are presented for 12 967 sunspot umbrae detected on the NASA/NSO spectromagnetograms between 1993 and 2004 to study umbral structure and strength during the solar cycle. The umbrae are selected using an automated thresholding technique. Measured umbral intensities are first corrected for a confirming observation of umbral limb-darkening. Log-normal fits to the observed size distribution confirm that the size spectrum shape does not vary with time. The intensity-magnetic flux relationship is found to be steady over the solar cycle. The dependence of umbral size on the magnetic flux and minimum intensity are also independent of cycle phase and give linear and quadratic relations, respectively. While the large sample size does show a low amplitude oscillation in the mean minimum intensity and maximum magnetic flux correlated with the solar cycle, this can be explained in terms of variations in the mean umbral size. These size variations, however, are small and do not substantiate a meaningful change in the size spectrum of the umbrae generated by the Sun. Thus, in contrast to previous reports, the observations suggest the equilibrium structure, as testified by the invariant size-magnetic field relationship, as well as the mean size (i.e. strength) of sunspot umbrae do not significantly depend on solar cycle phase.Comment: 17 pages, 6 figures. Published in Solar Physic

    Recent Developments in Helioseismic Analysis Methods and Solar Data Assimilation

    Get PDF
    MR and AS have received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 307117

    Educators' working conditions in a day care centre on ownership of a non-profit organization

    Get PDF
    Background: Working conditions of nursery school teachers have not been scrutinized thoroughly in scientific research. Only a few studies have so far examined work-load and strain in this profession. Preferably, subjective perceptions should be corroborated by data that can be quantified more objectively and accurately. The aim of the present observational field study was to evaluate pedagogical staffs' workflow. Methods: In 2009 eleven educators in a day care centre were observed throughout three complete workdays. A total of 250 working hours were recorded. Results: An educators' workday lasted on average 07:46:59 h (SD = 01:01:10 h).Within this time span, an average of 02:20:46 h (30.14%, SD = 00:28:07 h) were spent on caring, 01:44:18 h on playing (22.33%, SD = 00:54:12 h), 00:49:37 h on educational work (10.62%, SD = 00:40:09), and only 00:05:38 h on individual child contact (1.21%, SD = 00:04:58 h). Conclusion: For the first time, educators' workflow in day care centres was studied in real time. Some of the educators' self-reported problems were corroborated. The results of this study form a basis upon which further investigations can be built and measures can be developed for an overall improvement of child care
    • 

    corecore