570 research outputs found
Adaptive observers for nonlinearly parameterized systems subjected to parametric constraints
We consider the problem of adaptive observer design in the settings when the
system is allowed to be nonlinear in the parameters, and furthermore they are
to satisfy additional feasibility constraints. A solution to the problem is
proposed that is based on the idea of universal observers and non-uniform
small-gain theorem. The procedure is illustrated with an example.Comment: 19th IFAC World Congress on Automatic Control, 10869-10874, South
Africa, Cape Town, 24th-29th August, 201
Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields
Magnetic fields and magnetic impurities are each known to suppress
superconductivity. However, as the field quenches (i.e. polarizes) the
impurities, rich consequences, including field-enhanced superconductivity, can
emerge when both effects are present. For the case of superconducting wires and
thin films, this field-spin interplay is investigated via the
Eilenberger-Usadel scheme. Non-monotonic dependence of the critical current on
the field (and therefore field-enhanced superconductivity) is found to be
possible, even in parameter regimes in which the critical temperature decreases
monotonically with increasing field. The present work complements that of
Kharitonov and Feigel'man, which predicts non-monotonic behavior of the
critical temperature.Comment: 8 pages, 2 figures, EPL forma
Structure of 8B from elastic and inelastic 7Be+p scattering
Motivation: Detailed experimental knowledge of the level structure of light
weakly bound nuclei is necessary to guide the development of new theoretical
approaches that combine nuclear structure with reaction dynamics.
Purpose: The resonant structure of 8B is studied in this work.
Method: Excitation functions for elastic and inelastic 7Be+p scattering were
measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6
and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions
was performed.
Results: New low-lying resonances at 1.9, 2.5, and 3.3 MeV in 8B are reported
with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the
Time Dependent Continuum Shell (TDCSM) model and ab initio no-core shell
model/resonating-group method (NCSM/RGM) calculations is performed. This work
is a more detailed analysis of the data first published as a Rapid
Communication. [J.P. Mitchell, et al, Phys. Rev. C 82, 011601(R) (2010)]
Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by
some models at relatively low energy but never observed experimentally is an
important step toward understanding the structure of 8B. Their identification
was aided by having both elastic and inelastic scattering data. Direct
comparison of the cross sections and phase shifts predicted by the TDCSM and ab
initio No Core Shell Model coupled with the resonating group method is of
particular interest and provides a good test for these theoretical approaches.Comment: 15 pages, 19 figures, 3 tables, submitted to PR
Low-lying states in 8B
Excitation functions of elastic and inelastic 7Be+p scattering were measured
in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of
the excitation functions provides strong evidence for new positive parity
states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed
and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time
Dependent Continuum Shell Model were used in the analysis of the excitation
functions. The new results are compared to the calculations of contemporary
theoretical models.Comment: 6 pages, 5 figures, accepted as Rapid Communication in Phys. Rev.
Pair-breaking quantum phase transition in superconducting nanowires
A quantum phase transition (QPT) between distinct ground states of matter is
a wide-spread phenomenon in nature, yet there are only a few experimentally
accessible systems where the microscopic mechanism of the transition can be
tested and understood. These cases are unique and form the experimentally
established foundation for our understanding of quantum critical phenomena.
Here we report the discovery that a magnetic-field-driven QPT in
superconducting nanowires - a prototypical 1d-system - can be fully explained
by the critical theory of pair-breaking transitions characterized by a
correlation length exponent and dynamic critical exponent . We find that in the quantum critical regime, the electrical
conductivity is in agreement with a theoretically predicted scaling function
and, moreover, that the theory quantitatively describes the dependence of
conductivity on the critical temperature, field magnitude and orientation,
nanowire cross sectional area, and microscopic parameters of the nanowire
material. At the critical field, the conductivity follows a
dependence predicted by phenomenological scaling theories and more recently
obtained within a holographic framework. Our work uncovers the microscopic
processes governing the transition: The pair-breaking effect of the magnetic
field on interacting Cooper pairs overdamped by their coupling to electronic
degrees of freedom. It also reveals the universal character of continuous
quantum phase transitions.Comment: 22 pages, 5 figure
Crossing the Dripline to 11N Using Elastic Resonance Scattering
The level structure of the unbound nucleus 11N has been studied by 10C+p
elastic resonance scattering in inverse geometry with the LISE3 spectrometer at
GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement
was done at the A1200 spectrometer at MSU. The excitation function above the
10C+p threshold has been determined up to 5 MeV. A potential-model analysis
revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44
+-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV,
(Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and
5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion
completely analogous to its mirror partner, 11Be. A narrow resonance in the
excitation function at 4.33 (+-0.05) MeV was also observed and assigned
spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR
Alpha cluster resonance structure of light nuclei close to coulomb barrier
The aim of this experimental study is to
investigate the structure of the 19F nuclei at
energies representing astrophysical interest.
Here we study the resonant interaction 15N+4He
in the cyclotron DC-60 in Astana
Modeling of radiative - conductive heat transfer in compositing materials
A layer of composite material is investigated, which is heated one-sidedly with one-dimensional energy transfer accounting for thermal conductivity and radiation. A mathematical model is suggested for non-stationary coefficient thermophysical problem under radiative-conductive heat transfer in a material layer. Temperature dependencies of thermal capacity and thermal conductivity coefficient of composite radio-transparent material have been determined through numerical modeling by solving the coefficient reverse problem of thermal conductivity
Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air
A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50° C and powder consumption of 0.5 g/l of air. The resulting material contained 6–18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material – CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals
Simulation of the of the DeepLabv3 neural network learning process for the agricultural fields segmentation
Objective. Monitoring and determining the state of crops in agricultural production requires the use and improvement of neural network methods of artificial intelligence.The aim of the study is to create a mathematical model of the learning process of the DeepLabV3 neural network for intelligent analysis and segmentation of agricultural fields.Method. Based on the newly formed RGB database of images of agricultural fields, marked up into four classes, a neural network of the DeepLabV3 architecture was developed and trained. Approximations of the learning curve by the modified Johnson function are obtained by the methods of least squares and least modules.Result. A statistical assessment of the quality of training and approximation of neural networks to the DeepLabV3 architecture in combination with ResNet 50 was carried out. The constructed DNN family based on DeepLabV3 with ResNet50 showed the efficiency of recognition and sufficient speed in determining the state of crops.Conclusions. Approximation of the neural network learning diagram to the DeepLabV3 architecture, using a modified Johnson function, allows us to estimate the value of the “saturation” of the simulated dependence and predict the maximum value of the neural network metric without taking into account its possible retraining
- …
