2,008 research outputs found
Unconventional magnetism in all-carbon nanofoam
We report production of nanostructured carbon foam by a high-repetition-rate,
high-power laser ablation of glassy carbon in Ar atmosphere. A combination of
characterization techniques revealed that the system contains both sp2 and sp3
bonded carbon atoms. The material is a novel form of carbon in which
graphite-like sheets fill space at very low density due to strong hyperbolic
curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like
behaviour up to 90 K, with a narrow hysteresis curve and a high saturation
magnetization. Such magnetic properties are very unusual for a carbon
allotrope. Detailed analysis excludes impurities as the origin of the magnetic
signal. We postulate that localized unpaired spins occur because of topological
and bonding defects associated with the sheet curvature, and that these spins
are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10
September 200
Spin relaxation of conduction electrons in bulk III-V semiconductors
Spin relaxation time of conduction electrons through the Elliot-Yafet,
D'yakonov-Perel and Bir-Aronov-Pikus mechanisms is calculated theoretically for
bulk GaAs, GaSb, InAs and InSb of both - and -type. Relative importance
of each spin relaxation mechanism is compared and the diagrams showing the
dominant mechanism are constructed as a function of temperature and impurity
concentrations. Our approach is based upon theoretical calculation of the
momentum relaxation rate and allows understanding of the interplay between
various factors affecting the spin relaxation over a broad range of temperature
and impurity concentration.Comment: an error in earlier version correcte
Electronic structure of the muonium center as a shallow donor in ZnO
The electronic structure and the location of muonium centers (Mu) in
single-crystalline ZnO were determined for the first time. Two species of Mu
centers with extremely small hyperfine parameters have been observed below 40
K. Both Mu centers have an axial-symmetric hyperfine structure along with a
[0001] axis, indicating that they are located at the AB_{O,//} and BC_{//}
sites. It is inferred from their small ionization energy (~6 meV and 50 meV)
and hyperfine parameters (~10^{-4} times the vacuum value) that these centers
behave as shallow donors, strongly suggesting that hydrogen is one of the
primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR
Room-temperature ferromagnetism in graphite driven by 2D networks of point defects
Ferromagnetism in carbon-based materials is appealing for both applications
and fundamental science purposes because carbon is a light and bio-compatible
material that contains only s and p electrons in contrast to traditional
ferromagnets based on 3d or 4f electrons. Here we demonstrate direct evidence
for ferromagnetic order locally at defect structures in highly oriented
pyrolytic graphite (HOPG) with magnetic force microscopy and in bulk
magnetization measurements at room temperature. Magnetic impurities have been
excluded as the origin of the magnetic signal after careful analysis supporting
an intrinsic magnetic behavior of carbon. The observed ferromagnetism has been
attributed to originate from unpaired electron spins localized at grain
boundaries of HOPG. Grain boundaries form two-dimensional arrays of point
defects, where their spacing depends on the mutual orientation of two grains.
Depending on the distance between these point defects, scanning tunneling
spectroscopy of grain boundaries showed two intense split localized states for
small distances between defects (< 4 nm) and one localized state at the Fermi
level for large distances between defects (> 4 nm).Comment: 19 pages, 5 figure
Nanosized superparamagnetic precipitates in cobalt-doped ZnO
The existence of semiconductors exhibiting long-range ferromagnetic ordering
at room temperature still is controversial. One particularly important issue is
the presence of secondary magnetic phases such as clusters, segregations,
etc... These are often tedious to detect, leading to contradictory
interpretations. We show that in our cobalt doped ZnO films grown
homoepitaxially on single crystalline ZnO substrates the magnetism
unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior
was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and
AC susceptibility measurements. The results were correlated to a detailed
microstructural analysis based on high resolution x-ray diffraction,
transmission electron microscopy, and electron-spectroscopic imaging. No
evidence for carrier mediated ferromagnetic exchange between diluted cobalt
moments was found. In contrast, the combined data provide clear evidence that
the observed room temperature ferromagnetic-like behavior originates from
nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to
section III. (XMCD
Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting
The reversible phase transition induced by femtosecond laser excitation of
Gallium has been studied by measuring the dielectric function at 775 nm with ~
200 fs temporal resolution. The real and imaginary parts of the transient
dielectric function were calculated from absolute reflectivity of Gallium layer
measured at two different angles of incidence, using Fresnel formulas. The
time-dependent electron-phonon effective collision frequency, the heat
conduction coefficient and the volume fraction of a new phase were restored
directly from the experimental data, and the time and space dependent electron
and lattice temperatures in the layer undergoing phase transition were
reconstructed without ad hoc assumptions. We converted the temporal dependence
of the electron-phonon collision rate into the temperature dependence, and
demonstrated, for the first time, that the electron-phonon collision rate has a
non-linear character. This temperature dependence converges into the known
equilibrium function during the cooling stage. The maximum fraction of a new
phase in the laser-excited Gallium layer reached only 60% even when the
deposited energy was two times the equilibrium enthalpy of melting. We have
also demonstrated that the phase transition pace and a fraction of the
transformed material depended strongly on the thickness of the laser-excited
Gallium layer, which was of the order of several tens of nanometers for the
whole range of the pump laser fluencies up to the damage threshold. The
kinetics of the phase transformation after the laser excitation can be
understood on the basis of the classical theory of the first-order phase
transition while the duration of non-thermal stage appears to be comparable to
the sub-picosecond pulse length.Comment: 28 pages, including 9 figs. Submitted to Phys. Rev. B 14 March 200
Graphene as a quantum surface with curvature-strain preserving dynamics
We discuss how the curvature and the strain density of the atomic lattice
generate the quantization of graphene sheets as well as the dynamics of
geometric quasiparticles propagating along the constant curvature/strain
levels. The internal kinetic momentum of Riemannian oriented surface (a vector
field preserving the Gaussian curvature and the area) is determined.Comment: 13p, minor correction
Clostridium difficile sortase recognizes a (S/P)PXTG sequence motif and can accommodate diaminopimelic acid as a substrate for transpeptidation
AbstractCovalent attachment of surface proteins to the cell wall of Gram-positive bacteria requires a sortase-mediated transpeptidation reaction. In almost all Gram-positive bacteria, the housekeeping sortase, sortase A, recognizes the canonical recognition sequence LPXTG (X=any amino acid). The human pathogen Clostridium difficile carries a single putative sortase gene (cd2718) but neither transpeptidation activity nor specificity of CD2718 has been investigated. We produced recombinant CD2718 and examined its transpeptidation activity in vitro using synthetic peptides and MALDI-ToF(-ToF) MS analysis. We demonstrate that CD2718 has sortase activity with specificity for a (S/P)PXTG motif and can accommodate diaminopimelic acid as a substrate for transpeptidation
The origin of large molecules in primordial autocatalytic reaction networks
Large molecules such as proteins and nucleic acids are crucial for life, yet
their primordial origin remains a major puzzle. The production of large
molecules, as we know it today, requires good catalysts, and the only good
catalysts we know that can accomplish this task consist of large molecules.
Thus the origin of large molecules is a chicken and egg problem in chemistry.
Here we present a mechanism, based on autocatalytic sets (ACSs), that is a
possible solution to this problem. We discuss a mathematical model describing
the population dynamics of molecules in a stylized but prebiotically plausible
chemistry. Large molecules can be produced in this chemistry by the coalescing
of smaller ones, with the smallest molecules, the `food set', being buffered.
Some of the reactions can be catalyzed by molecules within the chemistry with
varying catalytic strengths. Normally the concentrations of large molecules in
such a scenario are very small, diminishing exponentially with their size.
ACSs, if present in the catalytic network, can focus the resources of the
system into a sparse set of molecules. ACSs can produce a bistability in the
population dynamics and, in particular, steady states wherein the ACS molecules
dominate the population. However to reach these steady states from initial
conditions that contain only the food set typically requires very large
catalytic strengths, growing exponentially with the size of the catalyst
molecule. We present a solution to this problem by studying `nested ACSs', a
structure in which a small ACS is connected to a larger one and reinforces it.
We show that when the network contains a cascade of nested ACSs with the
catalytic strengths of molecules increasing gradually with their size (e.g., as
a power law), a sparse subset of molecules including some very large molecules
can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
- …
