359 research outputs found

    Importance of bath dynamics for decoherence in spin systems

    Full text link
    We study the decoherence of two coupled spins that interact with a chaotic spin-bath environment. It is shown that connectivity of spins in the bath is of crucial importance for the decoherence of the central system. The previously found phenomenon of two-step decoherence (Phys. Rev. Lett. {\bf 90}, 210401 (2003)) turns out to be typical for the bath with a slow enough dynamics or no dynamics. For a generic random system with chaotic dynamics a conventional exponential relaxation to the pointer states takes place. Our results confirm a conjecture of Paz and Zurek (Phys. Rev. Lett. {\bf 82}, 5181 (1999)) that for weak enough interactions the pointer states are eigenstates of the central system.Comment: submitted to Physical Review Letter

    Relaxation, thermalization and Markovian dynamics of two spins coupled to a spin bath

    Get PDF
    It is shown that by fitting a Markovian quantum master equation to the numerical solution of the time-dependent Schr\"odinger equation of a system of two spin-1/2 particles interacting with a bath of up to 34 spin-1/2 particles, the former can describe the dynamics of the two-spin system rather well. The fitting procedure that yields this Markovian quantum master equation accounts for all non-Markovian effects in as much the general structure of this equation allows and yields a description that is incompatible with the Lindblad equation.Comment: arXiv admin note: text overlap with arXiv:1605.0660

    Logical inference approach to relativistic quantum mechanics: derivation of the Klein-Gordon equation

    Get PDF
    The logical inference approach to quantum theory, proposed earlier [Ann. Phys. 347 (2014) 45-73], is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space-time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds

    Decoherence by a spin thermal bath: Role of the spin-spin interactions and initial state of the bath

    Get PDF
    We study the decoherence of two coupled spins that interact with a spin-bath environment. It is shown that the connectivity and the coupling strength between the spins in the environment are of crucial importance for the decoherence of the central system. For the anisotropic spin-bath, changing the connectivity or coupling strenghts changes the decoherence of the central system from Gaussian to exponential decay law. The initial state of the environment is shown to affect the decoherence process in a qualitatively significant manner.Comment: submitted to PR

    Photon and spin dependence of the resonance lines shape in the strong coupling regime

    Get PDF
    We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings model) which shows a peculiar structure as a function of the number of cavity photons and of spins. We study how this structure causes changes in the spectrum of the admittance in the linear response theory, and also the frequency dependence of the excited quantities in the stationary state under a probing field. In particular, we investigate how the structure of the higher excited energy levels changes the spectrum from a double-peak structure (the so-called vacuum field Rabi splitting) to a single peak structure. We also point out that the spin dynamics in the region of the double-peak structure corresponds to recent experiments using cavity ringing while in region of the single peak structure, it corresponds to the coherent Rabi oscillation in a driving electromagnetic filed. Using a standard Lindblad type mechanism, we study the effect of dissipations on the line width and separation in the computed spectra. In particular, we study the relaxation of the total spin in the general case of a spin ensemble in which the total spin of the system is not specified. The theoretical results are correlated with experimental evidence of the strong coupling regime, achieved with a spin 1/2 ensemble

    First-principles modelling of magnetic excitations in Mn12

    Get PDF
    We have developed a fully microscopic theory of magnetic properties of the prototype molecular magnet Mn12. First, the intra-molecular magnetic properties have been studied by means of first-principles density functional-based methods, with local correlation effects being taken into account within the local density approximation plus U (LDA+U) approach. Using the magnetic force theorem, we have calculated the interatomic isotropic and anisotropic exchange interactions and full tensors of single-ion anisotropy for each Mn ion. Dzyaloshinskii-Moriya (DM) interaction parameters turned out to be unusually large, reflecting a low symmetry of magnetic pairs in molecules, in comparison with bulk crystals. Based on these results we predict a distortion of ferrimagnetic ordering due to DM interactions. Further, we use an exact diagonalization approach allowing to work with as large Hilbert space dimension as 10^8 without any particular symmetry (the case of the constructed magnetic model). Based on the computational results for the excitation spectrum, we propose a distinct interpretation of the experimental inelastic neutron scattering spectra.Comment: 8 pages, 2 figures. To appear in Physical Review

    Modeling electronic structure and transport properties of graphene with resonant scattering centers

    Get PDF
    We present a detailed numerical study of the electronic properties of single-layer graphene with resonant ("hydrogen") impurities and vacancies within a framework of noninteracting tight-binding model on a honeycomb lattice. The algorithms are based on the numerical solution of the time-dependent Schr\"{o}dinger equation and applied to calculate the density of states, \textit{quasieigenstates}, AC and DC conductivities of large samples containing millions of atoms. Our results give a consistent picture of evolution of electronic structure and transport properties of functionalized graphene in a broad range of concentration of impurities (from graphene to graphane), and show that the formation of impurity band is the main factor determining electrical and optical properties at intermediate impurity concentrations, together with a gap opening when approaching the graphane limit.Comment: 17 pages, 17 figures, expanded version to appear in PR
    corecore