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5Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
6Institute of Theoretical Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany

7Radboud University of Nijmegen, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
(Received 28 January 2014; revised manuscript received 4 June 2014; published 26 June 2014)

We have developed a fully microscopic theory of magnetic properties of the prototype molecular magnet Mn12.
First, the intramolecular magnetic properties have been studied by means of first-principles density functional
based methods, with local correlation effects being taken into account within the local density approximation
plus U (LDA + U ) approach. Using the magnetic force theorem, we have calculated the interatomic isotropic
and anisotropic exchange interactions and full tensors of single-ion anisotropy for each Mn ion. Dzyaloshinskii-
Moriya (DM) interaction parameters turned out to be unusually large, reflecting a low symmetry of magnetic pairs
in molecules, in comparison with bulk crystals. Based on these results we predict a distortion of ferrimagnetic
ordering due to DM interactions. Further, we use an exact diagonalization approach allowing one to work with
as large a Hilbert space dimension as 108 without any particular symmetry (the case of the constructed magnetic
model). Based on the computational results for the excitation spectrum, we propose a distinct interpretation of
the experimental inelastic neutron scattering spectra.

DOI: 10.1103/PhysRevB.89.214422 PACS number(s): 31.15.A−, 75.30.Gw, 75.30.Et

I. INTRODUCTION

Molecular magnets, such as Mn12, Fe8, Mn4, and V15,
are in the focus of modern science due to their potential
for novel technologies such as molecular electronics, solar-
energy harvesting, thermoelectrics, sensing, and others [1,2].
The functionality of molecular nanomagnets as materials for
advanced technologies is mainly related to the control and
manipulation of excited quantum spin states, which ultimately
requires the microscopic identification of the total spin,
energies, and lifetimes corresponding to different magnetic
excitations. Another interesting problem is the refinement
of unresolved structures of experimental spectra that are
due to the complex geometry and chemical composition
of molecular magnets. Still another complication for the
theoretical description is the twofold nature of the magnetic
excitations in such systems. While on the molecular level
these systems are an assembly of weakly interacting spins
and one can use a single-large-spin anisotropic Hamiltonian to
reproduce the experimental data, each molecule is a complex
system of strongly interacting atomic spins, which requires an
accurate definition of the magnetic interactions and solution
of the corresponding magnetic models.

All these problems are revealed in the case of Mn12

(Ref. [3]), which is a popular system for molecular spintronics.
The theoretical investigations [4–6] based on the density
functional theory (DFT) numerical methods gave a correct
description of the electronic and magnetic ground state
properties such as energy gap, and magnetic moment values
of both the individual atomic and molecule spins. To describe
the magnetic excitations in Mn12 the single-molecule-spin
Hamiltonian with uniaxial anisotropy was initially used [7].
Then additional couplings such as fourth-order transverse
molecular anisotropy, spin-phonon interactions, etc., were

artificially introduced into the model [8] to simulate the
tunneling effects. Despite the fact that such a model approach
reproduces the main features of the Mn12 magnetic spectra,
the underlying microscopic mechanisms are still unknown.
The latter can be addressed by using numerical calculations
based on DFT.

On the intramolecular level there are single-ion anisotropy,
interatomic isotropic and anisotropic exchange interactions
which define the main features of the excitation spectra. The
previous theoretical investigations devoted to the Mn12 system
were mainly focused on the definition of the isotropic magnetic
couplings between manganese atoms [4]. Much less studied
are anisotropic couplings such as Dzyaloshinskii-Moriya
(DM) interaction and single-ion anisotropy. It was shown that
they are important for explanation of magnetic excitations
observed in inelastic neutron scattering measurements [9].
In turn, the authors of Ref. [10] proposed a decisive role
of DM interactions in tunneling processes. However, the
main problem is that a rather accurate knowledge of the
Hamiltonian parameters is needed for the excitation spectra
simulations.

The Hilbert space dimension of the realistic Mn12 Hamil-
tonian is the most serious limitation for the theoretical
consideration of the magnetic excitations and reproducing
the experimental spectra. Normally, one exploits different
symmetries of the system, so that the Hilbert space can be
partitioned into sectors and the Hamiltonian matrix becomes
block diagonal [11]. There could be lattice symmetries and/or
spin symmetries; for instance, the conservation of the z

projection of the spin. In the case of the Mn12 molecule
we deal with the zero-dimensional object having a complex
network of the Dzyloshinskii-Moriya interactions that mix
the sectors with different total spins. Thus one faces the
eigenvalue problem for the matrix of 108 × 108 to perform
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a realistic simulation of the magnetic excitations of the
molecular magnet. In such a situation the use of the simplified
eight-spin Hamiltonian [9,10] for description of Mn12 was a
demonstration of the computational hardware and software
limits in the beginning of this century. Thanks to the constant
development of distributed and shared memory computing
systems, the realistic simulations of the molecular magnets are
available by means of realization of high-performance parallel
algorithms.

The aim of our investigation is to develop a microscopic
theory of the molecular magnetism in Mn12 that describes
the magnetic properties of the Mn12 molecule from first
principles without any fitting procedure. It combines the local
density approximation in conjunction with the Hubbard U term
(LDA + U ) for description of the ground state properties, the
Green’s function method for calculating the magnetic model
parameters, and high-performance parallel exact diagonaliza-
tion (ED) solver for simulating the experimentally observed
spectra of the system. We consider such an approach to be
preferable in comparison with previous ones, strongly relying
on the fitting of the existing experimental data. The latter often
leads to a situation in which the same experimental curve
can be fitted with completely different sets of parameters.
Moreover, the microscopic mechanisms leading to realization
of a particular magnetic structure remain unknown.

Our calculations for molecular magnet Mn12 reveal a
magnetic ordering that is richer than was thought for almost
20 years. There are noncollinear patterns in the magnetic
structure that are due to antisymmetric anisotropic exchange
interaction between manganese atoms. For instance, there is
a weak antiferromagnetic ordering for z-oriented magnetic
structure. On the other hand, if the magnetic moments
of manganese atoms are in the xy plane, they cant from
ferrimagnetic state in a similar way to antiferromagnets with
weak ferromagnetism. To define the role of the interatomic
interactions on the molecular level we use a Weiss-molecular-
field-type approach.

A consistent interpretation of the magnetic excitations in
Mn12 presented in the previous theoretical works is mainly
based on the fitting of the inelastic neutron scattering (INS)
spectra with simplified spin models [12]. Here we revise the
INS excitations by using the exact diagonalization of the full
Mn12 molecule Hamiltonian with parameters determined from
the first-principles calculations.

II. COMPUTATIONAL METHODS

Electronic structure. The projector augmented-wave (PAW)
method as implemented in the VASP program package [13] was
employed to obtain an accurate description of the electronic
and magnetic structure of Mn12. The spin-orbit coupling was
taken into account within a noncollinear realization of the
PAW method [14]. Correlation effects between Mn d states
were treated on a mean-field level using rotationally invariant
LSDA + U by Dudarev et al. [15]. The plane wave energy
cutoff of 600 eV was used along with a 4 × 4 × 4 k-point grid.

We also used the tight-binding linear-muffin-tin-orbital
atomic sphere approximation method [16]. The exchange and
correlation effects have been taken into account by using the
LDA + U [17] approach.

Magnetic interactions. In order to describe the magnetic
excitations of Mn12 we use the following spin Hamiltonian:

Ĥ =
∑
ij

Jij
�̂Si

�̂Sj +
∑
iμν

Ŝ
μ

i A
μν

i Ŝν
i +

∑
ij

�Dij [ �̂Si × �̂Sj ], (1)

where Jij is the isotropic exchange interaction, �Dij is the
Dzyaloshinskii-Moriya interaction, and A

μν

i is the element of
the single-ion magnetic anisotropy tensor (μ,ν = x,y,z). The
summation for interatomic couplings runs twice over every
pair. Such a Hamiltonian contains the different combinations
of the spin operators that conserve or do not conserve the total
spin of the system S. The combination of the first type is Ŝz

i Ŝ
z
i ,

Ŝz
i Ŝ

z
j , and Ŝx

i Ŝ
y

j − Ŝ
y

i Ŝx
j . In turn, the following operators cou-

ple the levels with different total spin: Ŝx
i Ŝz

j − Ŝz
i Ŝ

x
j (δS = ±1)

corresponding to the Dzyaloshinskii-Moriya interaction or
Ŝx

i Ŝ
y

i + Ŝ
y

i Ŝx
i (δS = ±2) describing the single-ion anisotropy.

The main goal of our investigation is to define the
parameters of the spin Hamiltonian equation (1). According
to the magnetic force theorem [18] the variation of the total
energy of the system due to a magnetic excitation can be
expressed through the variation of the single-particle energy

δE = −
∫ EF

−∞
dε δN(ε). (2)

Here N (ε) is the integrated density of the electron state and EF

is the Fermi energy. Usually, the magnetic excitations related
to a small rotation of the magnetic moments of the transition-
metal atoms from the collinear ground state are considered. In
this case the first and the second variations of the total energy
written in the basis |ilmσ 〉 (where i denotes the site, l the
orbital quantum number, m the magnetic quantum number,
and σ the spin index) are given by the following expressions:

δE = − 1

π

∑
i

∫ EF

−∞
dε Im Trm,σ (δHi Gii) (3)

and

δ2E = − 1

π

∫ EF

−∞
dε Im Trm,σ

( ∑
i

δ2Hi Gii

+
∑
ij

δHi Gij δHj Gji

)
. (4)

Here δH is the variation of the Hamiltonian, and Gii and Gij

are one-site and intersite atomic Green’s functions that can be
calculated by using the LDA + U approach.

Depending on the kind of magnetic excitations, we can
define different parameters of the spin Hamiltonian for the
atomic system. For instance, if the variation δHi is related
to the rotation of the magnetic moments from the collinear
ground state, then one can obtain the isotropic exchange
interaction [18]

Jij = − 1

4πSiSj

∫ EF

−∞
dε Im Trm(�i Gij ↓ �j Gji ↑), (5)

where �i is the magnetic splitting of the on-site potential and
Si is the atomic spin.

In 3d systems, the spin-orbit coupling (SOC) in itself can
be also considered as a perturbation [19,20]. In this case one
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can compute the magnetic anisotropy energy as

Eanis = − 1

2π

∑
ij

∫ EF

−∞
dε Im Trm,σ

(
H so

i Gij H so
j Gji

)
, (6)

where H so
i = λ �Li

�Si is the SOC operator for site i (λ =
0.05 eV). Changing the direction of the spin magnetization
one can define all the elements of the A

μν

i tensor.
There can be a mixed perturbation scheme with respect

to the rotation and spin-orbit coupling, which leads to the
antisymmetric anisotropic (Dzyaloshinskii-Moriya) exchange
interaction [21]

Dz
ij = − 1

8πSiSj

Re
∫ EF

−∞
dε

∑
k

× Trm
(
�iG

↓
ikH

so
k ↓↓G

↓
kj�jG

↑
ji − �iG

↑
ikH

so
k ↑↑G

↑
kj�jG

↓
ji

+�iG
↓
ij�jG

↑
jkH

so
k ↑↑G

↑
ki − �iG

↑
ij�jG

↓
jkH

so
k ↓↓G

↓
ki

)
.

(7)

Lanczos procedure. Once the parameters of the spin
Hamiltonian Ĥ have been computed, we apply the parallel
Lanczos algorithm for shared memory systems to calculate the
spin excitation spectrum. The main peculiarities of the Lanczos
method we use are the following. Generating the Lanczos
vector we do not store the Hamiltonian matrix elements; it is
so-called diagonalization on the fly. All the Lanczos vectors
are stored on hard disk to perform their orthogonalization by
the modified Gram-Schmidt method [22]. Our computational
scheme is sensitive to the required number of eigenvalues
and the number of Lanczos iterations. In the case of the Mn12

molecule the calculation of 50 eigenvalues with good accuracy,
as measured by the variances of the energy in each of the
approximate eigenstates, requires about 1 TB of disk space.
As we will show below such a number of eigenvalues of the
full Mn12 Hamiltonian can be defined as a minimum threshold
for performing a realistic description of the experimental INS
spectra.

III. LDA + U RESULTS

Electronic properties. The first step of our investigation is
to perform the ab initio calculations for correct description
of the ground state properties of the Mn12 system [23]. For
these purposes we have used the LDA + U method [17]. For
LDA + U calculations one needs to specify the values of the
on-site Coulomb and intra-atomic exchange interactions. The
choice of U and JH parameters for Mn12 was extensively
discussed by some of us in a prior work [4], where the values
of the U parameter in the range between 4 and 8 eV were
probed. These calculations have revealed a weak dependence
of the magnetic quantities, such as magnetic moments and
exchange integrals, on the U parameter.

Here we use U = 4 eV and JH = 0.9 eV for which the
calculated value of the energy gap is close to the experimental
one [24]. As we will show below, the obtained exchange inte-
grals and magnetic anisotropy lead to the excitation spectrum
that is in agreement with neutron scattering experiments. The
values of the magnetic moments that are 2.8μB for Mn4+

TABLE I. Intramolecular isotropic exchange interaction param-
eters (in meV) calculated by using the LDA + U approach. Positive
sign corresponds to the antiferromagnetic coupling.

Bond (i,j ) 1–6 1–11 1–9 6–9 7–9 1–4 1–3

Jij (this work) 4.6 1.0 1.7 −0.45 −0.37 −1.55 −0.5
Jij (Ref. [4]) 4.8 1.37 1.37 −0.5 −0.5 −1.6 −0.7
Jij (Ref. [26]) 7.4 1.72 1.72 −1.98

and 3.7μB for Mn3+ agree well with previous theoretical
results [4–6].

Isotropic exchange interactions. Previous works devoted
to the magnetic properties of Mn12 are mainly based on the
analysis of the spin Hamiltonian containing only the isotropic
exchange interactions between manganese atoms [4]. They
define the largest energy scale for magnetic interactions and
yield the ground state with S = 10 for the whole molecule.
By using the eigenvectors and eigenvalues of the electronic
Hamiltonian in the LDA + U approximation we calculated
the full set of the isotropic exchange interactions employing
Eq. (5).

The comparison of the computed interactions with results
of the previous theoretical and experimental works is presented
in Table I. One can see that we have obtained a more detailed
picture of magnetic couplings than before. For instance,
the interactions corresponding to the bonds 1–9 (3.44 Å)
and 1–11 (3.45 Å) are inequivalent in contrast to the prior
studies.

The method we use allows us to determine the orbital-
resolved contributions to total exchange interaction between
magnetic moments, Jij = ∑

mm′ J
mm′
ij , where m numerates the

3d states of the Mn atom. Since we consider superexchange
excitations through oxygen states, the individual Jmm′

ij can be
originated from two main microscopic mechanisms. The first
one is the antiferromagnetic kinetic Anderson exchange inter-

action [25] Jmm′
ij = 2(tmm′

ij )2

U
that is due to the hopping processes

between half-filled 3d orbitals. The second ferromagnetic
mechanism results from the overlap of the half-filled and empty

3d orbitals of manganese atoms, Jmm′
ij = − 2(tmm′

ij )2JH

U (U−JH ) [27].
The orbital analysis of the calculated exchange integrals

shows that the ferromagnetic interactions between Mn4+
ions are purely of the second type. At the same time the
interactions between the Mn3+ and Mn4+ ions are the result
of a competition of antiferromagnetic and ferromagnetic
contributions. For instance, this is the case for couplings 1–11
and 1–9 where a small difference in Mn-O-Mn bond angle and
distance leads to a considerable difference in ferromagnetic
contributions to the total exchange interaction.

Anisotropic exchange interactions. Having analyzed the
isotropic exchange interaction between magnetic moments
of manganese atoms we are going to discuss the antisym-
metric anisotropic exchange interaction that can lead to the
noncollinear ground state of the Mn12 system. The calculated
DM interaction parameters are presented in Table II. One can
see that the absolute values of some individual DM interactions
(1–11, 3–10, 2–9, and 4–12) are two orders of magnitude
smaller than the corresponding isotropic exchange integrals.
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TABLE II. Intramolecular anisotropic exchange interaction pa-
rameters calculated by using the LDA + U approach. �Rij is a radius
vector connecting ith and j th atoms (in units of a = 17.31 Å).

Bond (i,j ) �Rij
�Dij (meV)

2–7 (0.03; −0.16; 0.0) (−0.008; −0.013; −0.002)
4–8 (−0.03; 0.16; 0.0) (0.008; 0.013; −0.002)
1–6 (0.16; 0.03; 0.0) (−0.013; 0.008; −0.002)
3–5 (−0.16; −0.03; 0.0) (0.013; −0.008; −0.002)
1–11 (0.06; 0.18; 0.07) (−0.020; 0.03; −0.055)
3–10 (−0.06; −0.18; 0.07) (0.020; −0.03; −0.055)
2–9 (0.18; −0.06; −0.07) (−0.03; −0.020; −0.055)
4–12 (−0.18; 0.06; −0.07) (0.03; 0.020; −0.055)
1–9 (0.11; −0.16; 0.04) (0.020; 0.014; 0.03)
3–12 (−0.11; 0.16; 0.04) (−0.020; −0.014; 0.03)
2–10 (−0.16; −0.11; −0.04) (−0.014; 0.020; 0.03)
4–11 (0.16; 0.11; −0.04) (0.014; −0.020; 0.03)
6–9 (−0.04; −0.18; 0.04) (−0.006; −0.004; −0.012)
5–12 (0.04; 0.18; 0.04) (0.006; 0.004; −0.012)
7–10 (−0.18; 0.04; −0.04) (0.004; −0.006; −0.012)
8–11 (0.18; −0.04; −0.04) (−0.004; 0.006; −0.012)
7–9 (0.15; 0.1; −0.07) (0.020; −0.004; 0.012)
8–12 (−0.15; −0.1; −0.07) (−0.020; 0.004; 0.012)
6–11 (−0.1; 0.15; 0.07) (−0.004; −0.020; 0.012)
5–10 (0.1; −0.15; 0.07) (0.004; 0.020; 0.012)
4–1 (−0.10; 0.06; 0.11) (−0.014; 0.005; −0.013)
1–2 (−0.06; −0.10; 0.11) (−0.005; −0.014; −0.013)
3–4 (0.07; 0.1; 0.11) (0.005; 0.014; −0.013)
2–3 (−0.10; 0.07; −0.11) (0.014; −0.005; −0.013)
1–3 (−0.16; −0.03; 0.0) (−0.006; 0.030; 0)
2–4 (−0.04; 0.17; 0.0) (−0.030; −0.006; 0)

It is about ten times larger than one usually observes in
transition-metal crystals [28].

According to the Neumann’s principle [29] the DM in-
teractions possess the symmetry of the crystal. In the case
of the Mn12 system they are related by the symmetry of S4

(fourfold rotary-reflection axis parallel to z direction) group.
Taking into account that the Dzyaloshinskii-Moriya vector
is an axial vector, one can obtain the following relation:
�D12 = (Dx,Dy,Dz) transforms into �D41 = (Dy, − Dx,Dz).

The same relation is valid for other bonds denoted by the same
color (Fig. 1).

Despite the complex distorted geometry of the magnetic
core of the Mn12 molecule, the DM vector symmetry for some
bonds can be confirmed by the Moriya’s rules [30]. There is
the C2 rotational axis that is along the z direction and passes
through the point bisecting the straight line between Mn1 and
Mn3 atoms. This means that the z component of �D13 is equal
to zero.

The anisotropic exchange interactions in transition-metal
oxide can affect the magnetic structure in different ways. For
instance, it can result in weak ferro- or antiferromagnetism,
spin spiral state, or others [31]. As we will show below
depending on the direction of the molecule magnetic moment,
which can be controlled by an external magnetic field, the
atomic spins deviate from the ferrimagnetic state in different
planes. For instance, if �Bext ‖ z the magnetic moments of
Mn1, Mn3, Mn5, and Mn6 atoms will mainly cant in the xz

FIG. 1. (Color online) Schematic representation of the atomic
structure of the Mn12 molecule (xy projection). Symmetry of
magnetic interactions in Mn12. Mn atoms are shown as spheres.
Bonds of the same color (style) can be transformed to each other
by applying S4 symmetry operation. For instance, �D6−9 → �D8−11 →
�D5−12 → �D7−10. The arrows, locked inside transparent circles, show

the transverse components of the magnetic moments away from the
z axis as comes out from the first-principles calculations. The actual
ratio between the largest and smallest radii of the circles is supposed
to be about 6 (see Table V for numerical data), which is reduced in
the figure for better visualization.

plane. These perturbation theory results are confirmed by the
LDA + U + SO calculations described below.

Molecular torque. It is important to define the effect
of the interatomic Dzyaloshinskii-Moriya interaction on the
molecular level. Since the ground state of Mn12 with canting
of the molecule spin will be described below by means of
first-principles LDA + U + SO calculations, here we would
like to give a simple and preliminary microscopic description
of such an effect.

Due to the symmetry restrictions only z components of
the Dzyaloshinskii-Moriya interactions contribute to the total
magnetic torque of the whole molecule. This means that the
canting of the molecule spin exists when the atomic spins are in
the xy plane. Let us consider the ferrimagnetic ordering along
the x axis, �Si = ( 3

2 ,0,0) for i = 1 · · · 4 and �Si = (−2,0,0) for
i = 5 · · · 12. The canting of the molecule spin is formed by the
canting of the individual atomic spins. To describe the latter in
the simplest way we consider the independent excitations when
only the one spin deviates from the ferrimagnetic ordering.
This means that for each excitation the total energy of the
system has the following dependence on the deviation angle:

�E = −Sx
i δφz

i

∑
j

Dz
ijS

x
j − 1

2
Sx

i

(
δφz

i

)2 ∑
j

Jij S
x
j , (8)

where δφz
i is the rotational angle of the ith spin around the

z axis. Thus the angle corresponding to the minimum of the
energy is written in the form

δφz
i = −

∑
j Dz

ijS
x
j∑

j Jij S
x
j

. (9)
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We obtain δφz
i = 2.7 × 10−3 for i = 1 · · · 4, δφz

i = −3.5 ×
10−4 for i = 5 · · · 8, and δφz

i = −6.6 × 10−3 for i = 9 · · · 12.
One can see that the sign of the deviation depends on the
magnetic sublattice we consider. The magnetic moments of
Mn3+ and Mn4+ ions have different orientations. It is similar
to antiferromagnets with weak ferromagnetism [28].

The total molecule canting can be estimated as a sum of the
individual atomic deviations,

δφz
mol ≈ 1

S
∑

i

δφz
i S

x
i , (10)

where the molecular spin S = 10. The obtained angle of 0.007
is in reasonable agreement with the LDA + U + SO result of
0.002.

We would like to stress that the canting of the individual
atomic and molecular spins can be also realized through the
nondiagonal elements of the single-ion anisotropy tensor [32].
Such a scenario is considered below.

Single-ion anisotropy. To calculate the magnetocrystalline
anisotropy tensors for manganese atoms we have used
the method proposed by Solovyev et al. [19]. These results
are presented in Table III. One can see that the smallest
in-plane anisotropy of Azz

i − Axx
i = 0.02 meV is observed for

Mn1–Mn4 atoms. It is due to the fact that all the Mn-O bonds
with the MnO octahedra are close in distances varying from
1.85 to 1.91 Å. In turn the distortion of the Mn3+ octahedra
is much stronger at 1.88–2.25 Å (Mn5-Mn8) and 1.89–2.18 Å
(Mn9-Mn12). That leads to a considerable difference between
in-plane and out-of-plane anisotropies.

Another important result is that there are strong nondi-
agonal elements of the single-ion anisotropy tensor for the
Mn9–Mn12 atoms. These elements provide an additional
contribution to the spin moment canting from the z-oriented
collinear configuration. For instance, the element Axz

9 leads to
the canting around the y axis in the xz plane. According to
the calculated single-ion anisotropy the largest deviations take
place for Mn9–Mn12 atoms. These results will be confirmed
in the framework of the LDA + U + SO calculations.

It is interesting to estimate the anisotropy of the whole
molecule by summarizing the anisotropies of the individual
atoms. We obtain the following molecular anisotropy tensor:

Amol = 1

S2

12∑
i=1

AiS
2
i =

⎛
⎜⎝

0.008 0 0

0 0.008 0

0 0 −0.016

⎞
⎟⎠ ,

(11)

where the molecular spin S = 10, the atomic spins Si = 3
2

(for Mn1–Mn4), and Si = 2 (for Mn5–Mn12). The easy axis
is along the z direction and the xy plane is the hard plane. The
corresponding single-molecule anisotropy can be estimated
Azz

mol − Axx
mol = −0.28 K. That is in reasonable agreement

with the results of experimental fitting. It is important to
note that the nondiagonal elements of Amol are zero. Thus
the molecule torque is fully provided by the Dzyaloshinskii-
Moriya interaction. However, since we obtain the solution with
the xy hard plane, all the magnetic configurations with in-plane
molecular spin correspond to the same energy and there is no
energy gain due to the canting of the molecular spin.

TABLE III. The elements of single-ion magnetic anisotropy
tensors (in meV) obtained by using the Green’s function method,
Eq. (6).

Mn atom Anisotropy Tensor

0.006 0.004 −0.002
Mn1 0.004 −0.012 −0.001

−0.002 −0.001 0.006

−0.012 −0.004 0.001
Mn2 −0.004 0.006 −0.002

0.001 −0.002 0.006

0.006 0.004 0.002
Mn3 0.004 −0.012 0.001

0.002 0.001 0.006

−0.012 −0.004 −0.001
Mn4 −0.004 0.006 0.002

−0.001 0.002 0.006

0.033 0 0.018
Mn5 0 0.037 0.001

0.018 0.001 −0.07

0.033 0 −0.018
Mn6 0 0.037 −0.001

−0.018 −0.001 −0.07

0.037 0 0.001
Mn7 0 0.033 −0.018

0.001 −0.018 −0.07

0.037 0 −0.001
Mn8 0 0.033 0.018

−0.001 0.018 −0.07

0.020 −0.015 −0.048
Mn9 −0.015 0.015 −0.028

−0.048 −0.028 −0.035

0.015 0.015 0.028
Mn10 0.015 0.020 −0.048

0.028 −0.048 −0.035

0.015 0.015 −0.028
Mn11 0.015 0.020 0.048

−0.028 0.048 −0.035

0.020 −0.015 0.048
Mn12 −0.015 0.015 0.028

0.048 0.028 −0.035

IV. LDA + U + SO RESULTS

The results obtained by using the perturbation theory on ro-
tation of the magnetic moments and spin-orbit coupling should
be confirmed by a numerical approach taking into account the
spin-orbit coupling in the electronic Hamiltonian. For these
purposes we performed the LDA + U + SO calculations [14]
with different orientations of the total magnetization of the
Mn12 molecule (Table IV). In all the cases the performed
calculations revealed a noncollinear ground state for atomic
spins of the Mn12 molecule. The z-oriented configuration
corresponds to the minimum of the total energy. The energy
difference between z- and x-oriented states gives us the oppor-
tunity to estimate the anisotropy of the molecule with S = 10,
EZ

tot−EX
tot

S2 = −0.90 K. This value is in reasonable agreement with
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TABLE IV. Ground state properties obtained from LDA + U +
SO calculations. Etot (in meV) and �Mtot (in μB ) are the calculated
total energy and total magnetization of the Mn12 molecule.

Magnetization Etot Mx
tot M

y
tot Mz

tot

X 6.67 −19.99 0.045 0.0
Y 6.67 −0.045 −19.99 0.0
Z 0 0.0 0.0 −19.99

the experimental estimate of 0.56 K obtained in high-frequency
electron paramagnetic resonance measurements [33].

We also observe the canting of the total magnetic moment of
the molecule for x- and y-oriented configurations. This effect
is due to the interatomic Dzyaloshinskii-Moriya interactions.
The canting angle can be estimated as δφmol = 0.002, which
is in reasonable agreement with perturbation theory results.

Let us analyze the z-oriented configuration. The orienta-
tions of the spin and orbital magnetic moments are presented
in Fig. 1 and Table V. One can see that they obey the symmetry
operations of the S4 group. We observe a weak in-plane
antiferromagnetic ordering induced by the Dzyaloshinskii-
Moriya interaction.

In turn, for the x-oriented magnetic structure (Table VI)
there is no compensation of the y components of the magnetic
moments, which leads to the deviation of the molecule spin
from the x direction. Thus the obtained LDA + U + SO results
confirms our analysis of the anisotropic exchange interactions
between manganese atoms (Sec. III).

V. EXACT DIAGONALIZATION RESULTS

Having analyzed the magnetic ground state of the Mn12

system we are going to study the quantum spin excitation spec-
trum. For that, the constructed spin Hamiltonian equation (1) is
solved by means of an exact diagonalization approach. Our ED
solver is based on the parallel implementation of the Lanczos
algorithm and gives us the opportunity to calculate 50 lowest
eigenvalues and the corresponding eigenfunctions. This means

TABLE V. Individual site-resolved components of spin and
orbital magnetic moments (in μB ) obtained from LDA + U + SO
calculations for �Mtot||z.

Mn atom Mx
S M

y

S Mz
S Mx

L M
y

L Mz
L

Mn1 −0.002 0.000 2.835 0.000 0.000 −0.017
Mn2 0.000 −0.002 2.835 0.000 0.000 −0.017
Mn3 0.002 0.000 2.835 0.000 0.000 −0.017
Mn4 0.000 0.002 2.835 0.000 0.000 −0.017
Mn5 0.005 −0.002 −3.720 −0.004 0.000 0.027
Mn6 −0.005 0.002 −3.720 0.004 0.000 0.027
Mn7 −0.002 −0.005 −3.720 0.000 0.004 0.027
Mn8 0.002 0.005 −3.720 0.000 −0.004 0.027
Mn9 −0.002 0.002 −3.738 0.012 0.006 0.022
Mn10 −0.002 −0.002 −3.738 −0.006 0.012 0.022
Mn11 0.002 0.002 −3.738 0.006 −0.012 0.022
Mn12 0.002 −0.002 −3.738 −0.012 −0.006 0.022

TABLE VI. Individual site-resolved components of spin and
orbital magnetic moments (in μB ) obtained from LDA + U + SO
calculations for �Mtot‖x.

Mn atom Mx
S M

y

S Mz
S Mx

L M
y

L Mz
L

Mn1 2.835 0.007 0.007 −0.018 0.000 0.001
Mn2 2.834 0.009 −0.002 −0.019 0.000 0.000
Mn3 2.835 0.007 −0.007 −0.018 0.000 −0.001
Mn4 2.834 0.009 0.002 −0.019 0.000 0.000
Mn5 −3.721 −0.005 0.001 0.005 0.000 −0.004
Mn6 −3.721 −0.005 0.000 0.005 0.000 0.004
Mn7 −3.721 −0.003 0.005 0.006 0.000 −0.001
Mn8 −3.721 −0.004 −0.004 0.006 0.000 0.001
Mn9 −3.738 0.002 −0.026 0.011 0.004 0.012
Mn10 −3.738 0.015 0.019 0.013 −0.004 −0.007
Mn11 −3.738 0.015 −0.019 0.013 −0.004 0.007
Mn12 −3.738 0.002 0.026 0.011 0.004 −0.012

one can simulate the magnetic properties of the Mn12 at finite
temperatures.

The diagonalization results are presented in Fig. 2. All the
calculated energy levels correspond to the total spins S = 10
and S = 9. There is a gap of about 50 K between the states
with different S. The splittings between the nearest levels of
theS = 10 band are not uniform; they decrease with the energy
increase.

It is convenient to compare our low-energy spectrum with
that measured in INS experiments [12] with selection rule
δS = 0, ± 1. Based on the calculated eigenvalues we attribute
the INS features at 14 K with the transition δS = 0 and peaks
at 57 (66 K) with transition to the levels with S = 9. Such an
excitation picture contradicts the previous results obtained for
the simplified Mn12 models [9,12] where the first excitation of
14.4 K was associated with the transition S = 10 → 9. Our
simulations have shown that the account of the DM couplings
leads to an energy shift of the excited levels corresponding to
S = 9 and the structure of the S = 10 band does not change.

FIG. 2. (Color online) Schematic comparison of the theoretical
spectrum obtained by diagonalizing Eq. (1) and INS spectrum taken
from Ref. [12] (Figs. 6 and 8 therein). The arrows denote the intra-
and interband transitions that correspond to the excitations observed
in the INS experiment.
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VI. CONCLUSION

In conclusion, using the modern numerical techniques for
calculating the magnetic interactions we propose a realistic
spin model of the Mn12 molecular magnet. Such a model
contains the complete set of the isotropic and anisotropic
magnetic interactions. Moreover, the parameters of the model
take into account tiny details of the Mn12 atomic structure. For
instance, some bonds between manganese atoms have small
differences in length and angle of the metal-oxygen-metal
pathways and they were assumed to be equivalent in the
previous theoretical investigations. In our work we show that
such a small difference in geometry leads to a strong distinction
in exchange interactions, which can be explained from a
microscopic point of view by analyzing orbital contributions
to the exchange integrals.

Our first-principles results provide very strong evidence of
a complex noncollinear ordering of the manganese magnetic
moments. It is caused by the Dzyaloshinskii-Moriya interac-
tions and nondiagonal elements of the single-ion anisotropy,
whose symmetry fully obeys the S4 symmetry of the Mn12

system. Similar noncollinear patterns due to DM interactions
were recently found in famous itinerant magnet MnSi [34].
The authors of the work proposed an approach to measure
tilting components of the magnetic moment by using x-ray
and neutron diffraction techniques that can be also used in
case of the Mn12 system.

An important part of our work is the estimation of the
molecular anisotropic field, which is used to construct a
microscopically justified molecular-single-spin Hamiltonian.
The transition from individual atomic magnetic moments to
a macroscopic magnetic moment of the Mn12 molecule is
confirmed by LDA + U + SO calculations. In addition to the
well-known easy axis that is along the z direction we found the
xy hard plane. Another interesting result is that the interatomic
Dzyaloshinskii-Moriya interactions produce a torque acting on
the molecular magnetic moment in the xy plane, giving rise to
a weak ferromagnetic component of the magnetization.

The exact diagonalization of the full spin Hamiltonian with
parameters determined from first-principles calculations gives
us an opportunity to provide a distinct classification of the INS
peaks with respect to the spin transitions in the Mn12 system. In
contrast to previous considerations the low-energy excitations
are due to the S = 10 intraband transitions.
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