
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/83798

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/83798


ar
X

iv
:1

00
7.

39
30

v2
 

[c
on

d-
m

at
.m

es
-h

al
l] 

17 
Sep

 
20

10
M odeling  electron ic  stru ctu re and transport properties o f graphene w ith  resonant 

scatter in g  centers

Shengjun Y uan,1, * Hans De R aed t,2,  ̂ and M ikhail I. K atsnelson1, $
1 Institute for Molecules and Materials, Radboud University of Nijmegen, NL-6525ED Nijmegen, The Netherlands 

2Department of Applied Physics, Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands 

(Dated: September 20, 2010)

We present a detailed numerical study of the electronic properties of single-layer graphene with 
resonant ( “hydrogen” ) impurities and vacancies within a framework of noninteracting tight-binding 
model on a honeycomb lattice. The algorithms are based on the numerical solution of the time- 
dependent Schrodinger equation and applied to calculate the density of states, quasieigenstates, AC 
and DC conductivities of large samples containing millions of atoms. Our results give a consistent 
picture of evolution of electronic structure and transport properties of functionalized graphene in a 
broad range of concentration of impurities (from graphene to graphane), and show that the formation 
of impurity band is the main factor determining electrical and optical properties at intermediate 
impurity concentrations, together with a gap opening when approaching the graphane limit.

PACS num bers: 72.80.Vp, 73.22.Pr, 78.67.W j

I. IN T R O D U C T IO N

The experim ental realization of a single layer of carbon 
atom s arranged in a honeycomb lattice (graphene) has 
prom pted huge activ ity  in bo th  experim ental and theo
retical physics com m unities (for reviews, see Refs. 1-1 0 ). 
G raphene in real experim ents always has different kinds 
of disorder or im purities, such as ripples, adatom s, ad- 
molecules, etc. One of the  m ost im portan t problem s in 
graphene physics, especially, keeping in m ind potential 
applications of graphene in electronics, is understanding 
the effect of these im perfections on the electronic struc
tu re  and tran sp o rt properties.

Being massless Dirac fermions w ith the wavelength 
much larger th an  the interatom ic distance, charge car
riers in graphene sca tte r ra th e r weakly by generic short- 
range scattering  centers, sim ilar to  weak light scattering  
from obstacles w ith sizes much sm aller th a t the wave
length. The scattering  theory  for Dirac electrons in two 
dimensions is discussed in Refs. 11,13-1 5 . Long-range 
scattering centers are of special im portance for tran s
po rt properties, such as charge im purities6,16-18, ripples 
created  long-range elastic deform ations7,19, and resonant 
scattering centers 12,13,19-22. In the la tte r case, the  diver
gence of the scattering  length provides a long-range scat
tering and a very slow, logarithm ic, decay of the sca tte r
ing phase near the  Dirac (neutrality) point. Earlier the 
resonant scattering  of D irac fermions was studied in a 
context of d-wave h igh-tem perature superconductiv ity23. 
For the case of graphene, vacancies are pro to type exam 
ples of the resonant sca tterers21,24. Num erous adatom s 
and admolecules (including the im portan t case of hydro
gen atom s covalently bonded w ith carbon atom s) provide 
o ther exam ples25-27. Recently, some experim ental28 and 
theoretical29 evidence appeared th a t, probably, the res
onant scattering  due to  carbon-carbon bonds between 
organic admolecules and graphene is the m ain restric t

ing factor for electron m obility in graphene on a sub
stra te . Resonant scattering also plays an im portan t role 
in interatom ic interactions and ordering of adatom s on 
graphene30. This all makes the theoretical study  of 
graphene w ith resonant scattering  centers an im portan t 
problem.

In the present paper, we study  this issue by direct 
num erical sim ulations of electrons on a honeycomb la t
tice in the framework of the tight-binding model. Nu
m erical calculations based on exact diagonalization can 
only tre a t samples w ith relative small num ber of sites, 
for example, to  study  the quasilocalization of eigenstate 
close to  the neu tra lity  point around the vacancy 12,31 
and the splitting  of zero-energy Landau levels in the 
presence of random  nearest neighbor hoping32. For 
large graphene sheet w ith millions of atom s, the nu
m erical calculation of an im portan t property, the den
sity  of sta tes (DOS), is m ainly perform ed by the recur
sion m ethod31,33,34 and tim e-evolution m ethod 29,35. The 
tim e-evolution m ethod is based on num erical solution of 
tim e-dependent Schrodinger equation w ith additional av
eraging over random  superposition of basis sta tes. In this 
paper, we extend the m ethod of Ref. 36 to  com pute the 
eigenvalue d istribu tion  of very large m atrices to  the  cal
culation of tran sp o rt coefficients. I t allows us to  carry  
out calculations for ra th e r large systems, up to  hundreds 
of millions of sites, w ith a com putational effort th a t in
creases only linearly w ith the system  size. Furtherm ore, 
another extension of the  tim e-evolution m ethod yields 
the quasieigenstate, a random  superposition of degener
ate energy eigenstates, as well as the AC and DC 29 con
ductivities.

The num erical calculation of the conductivity  is based 
on the K ubo formula of noninteracting electrons. The 
details of these algorithm  will be given in this paper. 
O ur num erical results are consistent w ith the results 
on hydrogenated graphene37 and graphene w ith vacan- 
cies38, which are based on the num erical calculation of
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the Kubo-G reenw ood formula39. A nother widely used 
m ethod of the  num erical study  of electronic tran sp o rt in 
graphene is the recursive G reen’s function m ethod 40-49, 
which is generally applied to  relatively small samples fol
lowed by averaging of m any different configurations. The 
recursive G reen’s function m ethod is a powerful tool to  
calculate the  electronic tran sp o rt in small system  such as 
graphene ribbons, while the m ethod  th a t we employ in 
this paper is m ore suitable for large system s having m il
lions of atom s and  therefore does not involve averaging 
over different realizations.

The paper is organized as follows. Section II gives a de
scription of the tight-binding H am iltonian of single layer 
graphene including different types of disorders or im pu
rities, in the absence and presence of a perpendicular 
m agnetic field. In section III, we first discuss briefly the 
num erical m ethod used to  calculate the DOS, and show 
the accuracy of this algorithm  by com paring the analy ti
cal and  num erical results for clean graphene. Then, based 
on the calculation the DOS, we discuss the  effects of va
cancies or resonant im purities to  the electronic struc tu re  
of graphene, including the broadening of the  Landau lev
els and the split of zero Landau levels. In section IV, we 
introduce the concept of a quasieigenstates, and use it to  
show the quasilocalization of the  sta tes around the vacan
cies or resonant im purities. Sections V and VI give dis
cussions of the AC and DC conductivities, respectively. 
The details of num erical m ethods and various examples 
are discussed in detail in each section. F inally  a brief 
general discussion is given in section VII.

II. T IG H T -B IN D IN G  M ODEL

The tight-binding H am iltonian of a single-layer 
graphene is given by

H  =  Ho +  H i  +  H v +  Himp , (1)

where H 0 derives from the nearest neighbor interactions 
of the  carbon atoms:

H 0 =  ~  ^  '  t i j c+ cj , (2) 
<i,j>

H i  represents the  next-nearest neighbor interactions of 
the carbon atoms:

H i =  -  t ij c+ cj , (3)
<<i,j>>

Hv denotes the  on-site poten tia l of the carbon atoms:

Hv = ^ 2  Vi c++ci, (4)
i

and H imp describes the resonant im purities:

Himp =  d+ di +  (d + c  +  H .c.) . (5) 
i i

FIG. 1: (Color online) The lattice structure of a graphene 
sheet. Each carbon is labeled by an coordinate (m,n),  where 
m is along the zigzag edge and n  is along the armchair edge. 
Each carbon (red) has three nearest neighbors (yellow) and 
six next-nearest neighbors (blue).

For discussions of the last te rm  see, e.g. Refs. 27,50.
The spin degree of freedom contributes only th rough a 

degeneracy factor and is om itted  for sim plicity in Eq. (1). 
Vacancies are in troduced by sim ply removing the corre
sponding carbon atom s from the sample.

If a m agnetic field is applied to  the graphene layer, the 
hopping integrals are replaced by a Peierls substitu tion51, 
th a t is, the  hopping param eter becomes

t  t  eie IZ A di — t  ei(2n/$c) IZ A di (g)f tmne Z — tmne Z ? (g)

where jm  A  • dl is the line integral of the  vector potential 
from site m  to  site n, and the flux quantum  $o — ch /e .

Consider a single graphene layer w ith a perpendicular 
m agnetic field B  — (0,0, B).  Let the zigzag edge be along 
the x  axis, and use the Landau gauge, th a t is, the vector 
poten tia l A  — ( - B y ,  0 ,0) Then H 0 changes into

Ho ^  ' t (m,n),(m,n—1)am,nbm,n—1
m,n

+ ti  W 1 seinn($/$0)a + b +  t (m,n),(m-1,n)e am,nbm -  1,n
i-Z- c-inn ($ /$ o L +  l+ t (m,n),(m+1,n)e am,n bm+1,n

+H.c.  (7)

where

$  =  — Bo 2, (8 )

a is the  nearest-neighbor interatom ic distance.

III. D E N SIT Y  OF STATES

The density of sta tes describes the num ber of sta tes at 
each energy level. An algorithm  based on the evolution
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FIG. 2: (Color online) Comparison of the analytical DOS 
(in units of 1/i, black solid) with the numerical results of a 
sample contains 512 x 512 (red dash) or 4096 x 4096 (green 
dot) carbon atoms.

of tim e-dependent Schrodinger equation (TDSE) to  find 
the eigenvalue distribu tion  of very large m atrices was de
scribed in Ref. 3g. The m ain idea is to  use a random  
superposition of all basis sta tes as an initial s ta te  |& (0)}:

^ (0)} =  a  |i} (9)

where {|i}} are the basis sta tes and {a*} are random  com
plex num bers, solve the TD SE a t equal tim e intervals, 
calculate the correlation function

(& (0)| e -iH t |& (0)} , (10)

for each tim e step  (we use units w ith h — 1): and then  
apply the Fourier transform  to  these correlation functions 
to  get the local density of sta tes (LDOS) on the initial 
state:

e“ " (& (0)| e -iH t (0)} dt. (11)

In practice the  Fourier transform  in Eq. (11) is per
formed by fast Fourier transform ation  (FFT ). We use a 
G aussian window to  alleviate the  effects of the finite tim e 
used in the  num erical tim e in tegration  of the  TDSE. The 
num ber of tim e in tegration  steps determ ines the energy 
resolution: D istinct eigenvalues th a t differ more th an  this 
resolution appear as separate peaks in the spectrum . If 
the eigenvalue is isolated from the rest of the  spectrum , 
the w idth of the  peak is determ ined by the num ber of 
tim e in tegration  steps.

By averaging over different samples (random  initial 
s ta tes) we obtain  the density  of states:

p=1
(e) . (12)

For a large enough system , for example, graphene crys
tallite  consisting of 4096 x 4096 «  1.6 x 107 atom s, one 
initial random  superposition s ta te  (RSS) is already suf
ficient to  contain all the  eigenstates, thus, its LDOS is 
approxim ately equal to  the DOS of an infinite system,
i.e.,

D  (e) «  d ( e ) . (13)

For the proof of this results and a detailed analysis of 
this m ethod we refer to  Ref. 36. To validate the m ethod, 
we will com pare the analytical and num erical results for 
clean graphene.

The num erical solution of the  TD SE is carried out 
by using the Chebyshev polynom ial algorithm , which is 
based on the polynom ial representation of the  operator 
U (t) — e-itH  (see A ppendix A). The Chebyshev poly
nomial algorithm  is very efficient for the  sim ulation of 
quantum  system s and conserves the energy of the whole 
system  to  machine precision. In order to  reduce the ef
fects of the  graphene edges on the electronic properties 
(see, e.g., Ref. 35), we use periodic boundary  conditions 
for all the  num erical results presented in th is paper.

A. DOS of Clean Graphene

The analytical expression of the density  of sta tes of a 
clean graphene (ignoring the next-nearest neighbor in
teraction  t '  and the on-site energy) was given in Ref. 52
as

„ ( E i  =  { ^ v m r > K  ( w ) - 0 < E < t - 

* : ' J  , i ;  .'K  ) , *  < E  < 3>,

where F  (x) is given by

2 (x2 -  1)2

(14)

F  (x) — (1 +  x) —
4

and K  (m) is the elliptic integrals of first kind:

K  (m) — f  dx [(1 — x 2) (1 — m x 2)]
o

,2)] -1/2

(15)

(16)

In Fig. 2, we com pare the analytical expression 
Eq. (14) w ith the num erical results of the  density of sta tes 
for a clean graphene. One can clearly see th a t these nu
m erical results fit very well the analytical expression, and 
the difference between the num erical and analytical re
sults becomes smaller when using larger sample size (see 
the difference of a sample w ith 512 x 512 or 4096 x 4096 
in Fig. 2 ). In fact, the  local density of sta tes of a sample 
containing 4096 x 4096 is approxim ately the same as the 
density of sta tes of infinite clean graphene, which indi
cates the  high accuracy of the  algorithm .

CO

CO
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FIG. 3: (Color online) Density of states (in units of 1/t) as a function of energy E  (in units of t) for different resonant impurity 
(ed =  —1/16, V =  2t) or vacancy concentrations: m (nx) =  0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 1%, 5%. Sample size is 4096 x 4096.

B. DOS of Graphene w ith  Im purities

Next, we consider the influence of two types of defects 
on the DOS of graphene, namely, vacancies and reso
nan t im purities. A vacancy can be regarded as an atom  
(lattice point) w ith and on-site energy v f r o  or w ith 
its hopping param eters to  o ther sites being zero. In the 
num erical sim ulation, the sim plest way to  im plem ent a 
vacancy it to  remove the atom  a t the vacancy site. In tro 
ducing vacancies in a graphene sheet will create a zero 
energy modes (m idgap s ta te )12,31,33. The exact analyti
cal wave function associated w ith the zero mode induced 
by a single vacancy in a graphene sheet was obtained in 
Ref.33, showing a quasilocalized character w ith the am
plitude of the wave function decaying as inverse distance 
to  the vacancy. G raphene w ith a finite concentration of 
vacancies was studied num erically in Ref. 31. The num 
ber of the  m idgap sta tes increases w ith the concentration 
of the  vacancies. The inclusion of vacancies brings an in
crease of spectral weight to  the  surrounding of the Dirac 
point (E  — 0) and sm ears the van Hove singularities12,31. 
O ur num erical results (see Fig. 3) confirm all these find

ings.
Resonant im purities are in troduced by the form ation 

of a chemical bond between a carbon atom  from graphene 
sheet and a carbon/oxygen/hydrogen  atom  from an ad
sorbed organic molecule (CH3, C 2H5, CH2OH, as well as 
H and OH groups)29. To be specific, we will call adsor
bates hydrogen atom s bu t actually, the  param eters for 
organic groups are alm ost the sam e29. The adsorbates 
are described by the H am iltonian H imp in Eq. (1). The 
band  param eters V «  2t and ed «  — t / 16 are obtained 
from the ab initio  density functional theory  (D FT) calcu
lations29. As we can see from Fig. 3, small concentrations 
of vacancies or hydrogen im purities have sim ilar effects 
to  the DOS of graphene. Hydrogen adatom s also lead to  
zero modes and the quasilocalization of the low-energy 
eigenstates, as well as to  sm earing of the  van Hove sin
gularities. The shift of the  central peak of the DOS w ith 
respect to  the D irac point in the case of hydrogen im pu
rities is due to  the nonzero (negative) on-site potentials 
£d.

Now we consider the electronic struc tu re  of graphene 
w ith a higher concentration of defects. Large con
centration  of vacancies in graphene leads to  well pro-
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FIG. 4: Density of states (in units of 1/t) as a function of 
energy E  (in units of t) for the vacancies with large concen
trations: n x =  5%, 10%, 20%, 30%, 50%, 90%. Sample size 
is 4096 x 4096 for n x < 50% and 8192 x 8192 for n x =  90%.

nounced sym m etric peaks in the  DOS: a very high cen
tra l peak a t the Dirac point, two small peaks a t the 
Van Hove singularities, and tiny  peaks a t |E | / t  =  
0.618,0.766,1.414,1.618,1.732,1.848 (see Fig. 4 ) . These 
results indicate the emergence of small pieces of iso
la ted  carbon groups, shown in Fig. 5. The positions

E/t P

0 (1- nx)nx3
±1 (1-*x)V

+ 21/2 (1-nx)3nx5

± 3* (1-nx)4nx6

(+1 + 5/ )/2 (1-nx)4nx6

±(2± 2/)/ (1-nx)5nx7

0, + 1, + 3/ (1-nx)5nx7

FIG. 5: Typical atomic structures of most favourable isolated 
carbon groups in graphene with large concentration of vacan
cies. The energy eigenvalues of each group are listed in the 
central column (in units of t), and P  is the probability of a 
particular group to be found in a graphene sample.

of the peaks in the  DOS m atch very well w ith the en
ergy eigenvalues of these small subgroups. For example, 
non-interacting carbon atom s contribute to  the  peak at 
Dirac point, and isolated pairs contribute to  the  peaks 
a t Van Hove singularities. G raphene w ith very high va
cancy concentration, e.g., n x =  90%, is m ainly a sheet 
of non-interacting carbon atom s, w ith small am ount of 
isolated pairs, and tiny  am ounts of isolated triples. Only 
the peaks corresponding to  these groups appear in the 
calculated DOS of nx =  90% in Fig. 4.

G raphene w ith 100% concentration of hydrogen im pu
rities is not graphene, bu t pure g raphane53. G raphane 
is shown to  be an insulator because of the  existence of 
a band  gap (in our model, 2t), see the bo ttom  panel in 
Fig. 6. G raphene w ith large concentration (n*) of hy
drogen im purities corresponds to  graphane w ith small 
concentrations (1 — n*) of vacancies of hydrogen atom s, 
which leads, again, to  appearance of localized m idgap 
sta tes (shifted from zero due to  nonzero ed) on the car
bon atom s which have no hopping integrals to  any hy
drogen, see these central peaks in Fig. 6 . Despite the 
fact th a t our model is oversimplified for dealing w ith fi
nite concentrations of hydrogen (in general, param eters 
of im purities should be concentration dependent, direct 
hopping between hydrogens should be taken  into account, 
etc.), th is conclusion is in an agreem ent w ith first p rin
ciple calculations54.

5
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FIG. 6: Density of states (in units of 1/t) as a function of 
energy E  (in units of t) for the resonant impurities (ed =  
—1/16, V =  2t) with large concentrations: n  =  50%, 90%, 
99%, 99.5%, 100%. Sample size is 2048 x 2048.

C. DOS of Graphene w ith  Im purities in the  
M agnetic Field

A m agnetic field perpendicular to  a graphene layer 
leads to  discrete Landau energy levels. The energy of 
the  Landau levels of clean graphene is given by2,3

E n  = sg n (N )  \J'2e fw p B  |AT|, (17)

where in the  nearest-neighbor tigh t binding model

v p / t  =  3a/2ft. (18)

O ur num erical calculations reproduces the positions of 
the Landau levels. In troducing im purities or disorders 
in graphene will broaden the Landau levels. Fig. 7
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JL -L_
0.00 0.05 0.10 0.15 0.20

0.003

0.089 0.090 0.092

E/t

FIG. 7: (Color online) Density of states (in units of 1/t) as 
a function of energy E  (in units of t) in the presence of a 
uniform perpendicular magnetic field (B =  60T) with vacancy 
concentration n x =  0.01%. The red curves are Gaussian fits of 
Eq. (19) centered about each Landau levels, with w =  7.09 x 
10-4 for E n  =  0 (N  =  0), w =  7.03 x 10-4 for E n  =  0.0909t 
(N  = 1 ) , and w =  7.87 x 10-4 for E  =  0.0232t (between zero 
and first Landau levels). Sample size is 8192 x 8192.

presents the num erical results for a uniform  perpendic
ular m agnetic field (B  =  60T ) applied to  a 8192 x 8192 
graphene sam ple w ith a small concentration of vacancies 
(nx =  0.01%). The spectral d istribu tion  near each Lan
dau level fits well to  the G aussian function

p (E ) =  A exp
(E  -  E n )

2w2
(19)

w ith w  «  7 x  10 t. Between two Laudau levels, there are 
ex tra  peaks which also fit to  a G aussian d istribu tion  w ith 
w «  8 x  10-4 t. These additional localized sta tes were also 
found in o ther num erical sim ulations34 of much smaller 
96 x 60 samples w ith a stronger m agnetic field (B  «  
400T) and larger concentration of vacancies (nx =  0.21% 
and 0.42%).

Increasing the concentration of the vacancies will 
sm ear and suppress the Landau levels except the one at

2
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FIG. 8: (Color online) Density of states (in units of 1/i) as a 
function of energy E  (in units of i) in the presence of a uni
form perpendicular magnetic field (B  = 20T) with different 
vacancy concentrations: n x = 0%, 0.01%, 0.05%, 0.1%), 0.5%). 
Sample size is 4096 x 4096.
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FIG. 9: (Color online) Density of states (in units of 1/i) as a 
function of energy E  (in units of i) in the presence of a uniform 
perpendicular magnetic field (B  = 50T) with different hydro
gen concentrations m  = 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%. 
Sample size is 4096 x 4096.

zero energy12, see Fig. 8. The zero-energy Landau level 
seems to  be robust w ith respect to  resonant im purities 
since the la tte r form their own m idgap states.

The presence of hydrogen im purities has sim ilar effects 
on the spectrum  as in the case of vacancies (compare Fig. 
8 and 9) except th a t, because of the  non-zero on-site en
ergy (ed) of hydrogen sites, the zero-energy Landau level 
splits into two for a certain  range of hydrogen concen
tra tions (for example, see n.,, =  0.05% in Fig. 9). The 
peak a t the  neu tra lity  point corresponds to  the  original 
zero-energy Landau level whereas the o ther one origi
nates m ainly from hybridization w ith hydrogen atom s.

e/t e/t

FIG. 10: (Color online) The error (5 and a) of the approx
imation of I1!/ (&)} of a quasieigenstate in a graphene sam
ple (4096 x 4096) with vacancies or hydrogen ((e^ =  —i/16, 
V  = 2i) impurities. The concentration of the defeats is 0.1%).

The splitting  of zero-energy Landau level by o ther kinds 
of disorder is also observed, for example, w ith random  
nearest-neighbor hopping between carbon atom s as re
ported  in Ref. 32.

For small concentration of hydrogen im purities (n.,, =
0.01% in Fig. 9), there are also ex tra  peaks between zero 
and first Landau levels, similar as in the case for low 
concentration of vacancies. The difference is th a t these 
two ex tra  peaks are not sym m etric around the neutra lity  
point, because of non-zero on-site energy (q ).

IV. Q UASIEIG ENSTATES

For the general H am iltonian (1) and for samples con
tain ing millions of carbon atom s, in practice, the eigen
sta tes cannot be obtained directly  from m atrix  diagonal- 
ization. An approxim ation of these eigenstates, or a su
perposition of degenerate eigenstates can be obtained by 
using the spectrum  m ethod55. Let |<^(0)) =  J2n A n |??.} 
be the initial s ta te  of the system , and {|w}} are the  com
plete set of energy eigenstates. The sta te  a t tim e t  is

- i H t H 0 )>. (20)

Perform ing the Fourier transform  of \<p (t)) one obtains 
the expression

1

„

- V i
2 tr ^

dte'£t |(p (t))

/•O O
d t e K c - E n )t

A n6 (e -  E n ) |j?)

which can be norm alized as 

!*(£)> 1
\J j2 n  IA, r  S (t -  E n

^  A n6 (e — E n

(21)

| n) .

(22)

It is clear th a t I'l' (e)) is an eigenstate if it is a single (non
degenerate) s ta te , and some superposition of degenerate 
eigenstates w ith the energy e, otherwise.
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FIG. 11: (Color online) Position of hydrogen impurities (black dots in the top left panel) and contour plot of the amplitudes 
of the quasieigenstates in the central part of a graphene sample (4096 x 4096) with different energies. The concentration of the 
hydrogen impurities (ed =  —1/16, V =  2t) is 0.1%.

In general, |^  (e)} will not be an eigenstate bu t may 
be close to  one and therefore we call it quasieigenstate. 
A lthough |^  (e)} is w ritten  in the energy basis, the  ac
tua l basis used to  represent the  sta te  |̂ > (t)} can be any

orthogonal and com plete basis. I t is convenient to  in tro
duce two variables â (e) and a  (e) to  m easure the differ
ence between a tru e  eigenstate and the quasieigenstate
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FIG. 12: (Color online) Contour plot of the amplitudes of the quasieigenstates in the central part of a graphene sample 
(4096 x 4096) with different energies. The concentration of the vacancy impurities (indicated by black dots) is 0.1%.

l*(e)>:

6(e)  = <* ( £ ) j H j *  ( e ) ) - e ,  (23)

a( e )  = s j ( *  (e) \H*\V (e)) -  <* (e) \H \*  (e))2.(24)

As 6 (e) is a m easure of the energy shift and a  (e) is 
the variance of the approxim ation, bo th  variables should 
be zero if |^  (e)> is a quasieigenstate w ith the energy 
e. From  num erical experim ents (results not shown), 
we have found two ways to  improve the accuracy of 
the quasieigenstates. One is th a t the  Fourier transform  
should be perform ed on the sta tes from bo th  positive and 
negative times, and the o ther is th a t the wave function 
|̂ > (t)> should be m ultiplied by a window function (Han
ning window56) (1 +  c o s (n t/T )) /2  before perform ing the 
Fourier transform , T  being the final tim e of the propa
gation. The propagation in b o th  positive and negative 
tim e is necessary to  keep the original form of the  inte
gral in Eq. (21), and the use of a window improves the 
approxim ation to  the integrals.

In Fig. 10 we show 6 (e) and a  (e) of the calculated

quasieigenstates in graphene w ith vacancy or hydrogen 
im purities. The tim e step  used in the  propagation of 
the wave function is t =  1 in the case of vacancies and 
t =  0.6 in the  case of hydrogen im purity. The to ta l 
num ber of tim e steps is N t =  2048 in b o th  cases. One 
can see th a t the errors in the energy of |^  (e)> are quite 
small (|6 (e)| <  5 x 10- 4 ), and the stan d ard  deviation 
a  (e) is less th an  2 x 10-3  and 3 x 10-3  for vacancies 
and hydrogen im purities, respectively. The value a  (e) 
is smaller in the case of the vacancies due to  the larger 
tim e step  and larger propagation tim e used. The fluctu
ations of 6 (e) in the  region close to  the neu tra lity  point 
(e =  0) are due to  the error in troduced by the finite 
discrete Fourier transform  in Eq. (21), because near the 
neu tra lity  point, the  finite discrete Fourier transform  may 
mix com ponents from the eigenstates in the  opposite side 
of the spectrum . In fact, it would be more accurate to  
directly  use ( ^  (e) |H |^  (e)> instead of e as the energy of 
the quasieigenstate. Notice th a t the error of a  (e) w ith 
e =  0 is smaller th an  in the case of nonzero e, since for 
e =  0 there is no error due the com bination of the factor
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elEt(= 1) w ith the s ta te  \<p (t)). All the errors of 5 (e) and 
a  (e) as well as these fluctuations around <5 (e) can be re
duced by increasing the tim e step  r  a n d /o r to ta l num ber 
of tim e steps N t .

A lthough quasieigenstates are not exact eigenstates, 
they  can be used to  calculate the  electronic properties 
of the sample, such as the DC conductivity  (as will be 
shown later). The contour plot of the am plitudes of 
the  quasieigenstates d irectly  reveals the struc tu re  of the 
eigenstates w ith certain  eigenenergy, for example, the 
quasilocalization of the  low-energy sta tes around the va
cancy or hydrogen im purity, see Fig. 11 and Fig. 12. The 
quasilocalization of the  sta tes around the im purities oc
curs not only for zero energy, bu t also for quasieigen
sta tes w ith the energies close to  the neu tra lity  point. 
This quasilocalization leads to  an increase of the  spec
tra l weight in the vicinity of the Dirac point (E  =  0), see 
Fig. 3. The sta tes w ith larger eigenenergy are extended 
and robust to  small concentration of im purities, and their 
spectral weight is close to  th a t in clean graphene. One 
can see th a t in the  case of hydrogen im purities, the 
quasieigenstates th a t are close enough to  the im purity  
states, i.e., E / t  =  —0.0626 «  in Fig. 11, are dis
trib u ted  in the whole region around hydrogen atom s. 
The carbon atom s coupled to  hydrogens look like “va
cancies” , w ith  very small probability  am plitudes, which 
explains why hydrogen im purities and vacancies produce 
sim ilar effects on the electronic properties of graphene.

V. O PTICAL C O N D U C T IV IT Y

K ubo’s formula for the optical conductivity  can be ex
pressed as57

lim
1

e—̂0+ {üJ ~\~ %£̂ j 
poo

+  /  e ^ + ^ d t  {[Ja ( t ) , J ß])},  (25)

where P  is the polarization operator

(26)P  =  e ^ r j c t c j ,
i

and J  is the  current operator

J  = P  = e Y , n c + Ci = U H , P } .  (27)

For a generic tigh t binding H am iltonian, the current op
era to r can be w ritten  as

%C v—
J = — f (28)

and

[pa , j ß \  — ^ (r i r j ) a (r j

(29)

The ensemble average in Eq. (25) is over the  Gibbs 
d istribution , and the electric field is given by E  (t) =  
Eoexp(*w  +  e ) t  (e is a small param eter in troduced in 
order th a t E  (t) —> 0 for t  —> —oo). In graphene, P  and 
J  are two-dimensional vectors, and il is replaced by the 
area of the sample S.

In general, the  real p a rt of the  optical conductivity  
contains two parts, the  Drude weight D  (lo =  0) and 
the regular p a rt (lo ^  0). We om it the calculation of 
the Drude weight, and focus on the regular part. For 
non-interacting electrons, the regular p a rt is58

Reo-a/3 (w) = lim
E^0+

a—ßhu _

hwCi
e Et sin Lot

x2Im  (ƒ (H)  J a (t) [1 - f ( H ) \ J ß)dt ,
(30)

where ¡3 =  1 / k s T ,  ¡j , is the  chemical potential, and the 
Ferm i-Dirac d istribu tion  operator

f ( H )
1

(31)

In the num erical calculations, the  average in Eq. (30) 
is perform ed over a random  phase superposition of all 
the basis sta tes in the real space, i.e., the same initial 
s ta te  |y>(0)) in calculation of DOS. The Fermi d istribu
tion operator ƒ (H)  and 1 — ƒ (H)  can be obtained by 
the stan d ard  Chebyshev polynom ial decom position (see 
A ppendix B).

By introducing the three wave functions59

b i  (t ))x 

l¥>l (t))y

i w  m

V [ 1  - f { H ) ] J x \ v) ,  (32) 

^  [1 - f { H ) ] J y \<p), (33) 

^ f ( H )  \<p), (34)

we get all elements of the regular p a rt of Re<ra / 3 (w):

e-/3Rw _  ^
R e a a ß  (w) =  lim

£—̂0+
e £t sin Lot

21m (cp2 ( t ) \ Ja \cp1 (t))ß dt. (35)

A. Optical C onductivity of Clean Graphene

In Fig. 13, we com pare our num erical results to  the 
analytical results obtained in Refs. 60-62, where the real 
p a rt of the conductivity  in the visible region has the 
form60

Re<jTT =
n t 2 a?

-PS A J vlo 

(  , Hlo +  2 «

£ . 1 1 8 -
H2L02

tan h

t 2
H lo —  2  ¡ i  

AkBT

h 2 L02

4!2 H 2

(36)
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FIG. 13: (Color online) Comparison of the numerically calculated optical conductivity (/li : 
Eq. (36) (analytical I) and Eq. (37) (analytical II). The size of the system is M  = N  = 8192.

0 or 0.2eV, T  = 300K)  with

with the minimum conductivity an =  ne2/2h .  Around 
ui =  0 the real part of the conductivity can be simplified
as60-62

B. Optical C onductivity of Graphene w ith  
Random  on-Site Potentials

Re<jT oo
1 T rur  

+ 72 t 2 
hui +  2/x

( ta" h i k B T
tanh

hui — 2/x 
4 k BT • (37)

As we can see from Fig. 13, the numerical and analyt
ical results match very well in the low frequency region, 
but not in the high frequence region. This is because the 
analytical expressions are partially based on the Dirac- 
cone approximation, i.e., the graphene energy bands are 
linearly dependent on the amplitude of the wave vector. 
It is exact for the calculations of the low-frequence op
tical conductivity, but not for high-frequence. Our nu
merical method does not use such approximation and has 
the same accuracy in the whole spectrum. Furthermore, 
our numerical results also show tha t the conductivity of 
liiv i,, with /t =  0 in the limit of ui =  0 converges to the 
minimum conductivity an when the tem perature T  —> 0.

The on-site potential disorder can change the elec
tronic properties of graphene dramatically. For example, 
if the potentials on sublattices A and B are not symmet
ric, a band gap will appear. If we set Vd and —Vd as 
the on-site potential on sublattice A and B, respectively, 
then a band gap of size 2Vd is observed in the central 
part of DOS and the optical conductivity in the region 
0 < ui < 2Vd becomes zero, see the red dashed lines 
(i’d =  t) in Fig. (14). If the potentials on sublattice A 
and B are both uniformly random in a range [—iv /i’r], 
then the spectrum is broaden symmetrically around the 
neutrality point (because of the random character of the 
potentials on sublattice A and B), and there is no band 
gap, see the colored lines (except the red one) in Fig. (14). 
It softens the singularities in the DOS, the smearing be
ing larger for a larger degree of disorder. The smearing 
of the DOS leads to the smearing of the optical conduc
tivity, see a xx in Fig. 14.
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FIG. 14: (Color online) Comparison of DOS (in units of 1/i) 
and optical conductivity (^ =  0, T  =  300K) with symmetri
cal random (vr ) or antisymmetrical fixed (±vd) potential on 
sublattices A and B. The size of the system is M  =  N  =  4096.

C. Optical C onductivity of Graphene with  
R esonant Im purities

In Fig. 15 we present the  optical conductivity  of 
graphene w ith various concentrations of hydrogen im
purities. Small concentrations of the  im purities have 
a small effect on the optical conductivity, bu t higher 
concentrations change the optical properties d ram ati
cally, especially when the concentration reaches the m ax
im um  (100%), i.e., when graphene becomes graphane. 
G raphane has a band  gap (2t), see bo ttom  panel in Fig. 6, 
which leads to  the  zero optical conductivities w ithin the 
region |w| € [0, 2t], see Fig. 15) for n* =  100%. At in
term ediate concentrations, one can clearly see additional 
features in the optical conductivity  related  w ith the for
m ation of im purity  band. The Van Hove singularity  of 
clean graphene is sm eared out com pletely for concentra
tions as small as 1%.

4096X4096
H=0,T=300K

--------n.=0%1
n.=0.1%1

------n.=l%1
n.=50%1

..... n.=90%

n.=100%

\___
.. ....

n ------ 1------ 1
3------- 4 

co/t

FIG. 15: (Color online) Comparison of optical conductivity 
(^ =  0, T =  300K) with different concentration of hydrogen 
impurities. The size of the system is M  =  N  =  4096, except 
for the clean graphene (M =  N  =  8192).

VI. DC C O N D U C T IV IT Y

The DC conductivity  can be obtained by taking w f  0 
in Eq. (25) yielding58

(38)

We can use the same algorithm  as we used for the optical 
conductivity  to  perform  the in tegration  in Eq. (38), bu t it 
is not the best practical way since it only leads to  the DC 
conductivity  w ith one chemical poten tia l each time, and 
the num ber of non-zero term s in Chebyshev polynom ial 
representation  grow th exponentially when the tem pera
tu re  tends to  zero. In fact, a t zero tem pera tu re  can 
be simplified as

d f
“ d H = S { E F ~ H ) ’ 

and therefore Eq. (25) can be simplified as

(39)

N
° T = o  =  ^ j 7 R e  1 1  {n\  J  \ m )  ( m \  J  \n)

m,n= 1
x S (E f  — E m ) S (E f  — E n ). (40)

By using the quasieigenstates |^  (e)> obtained from the 
spectrum  m ethod in Eq. (21), we can prove th a t (see 
A ppendix C)

P { £ )
V

fOQ
ƒ dtRe [e-ie i (y>| J  |e>] «  a T= 0 ,

J  0
(41)

where |y>) is the same initial random  superposition sta te  
as in Eq. (20) and

k> =
I M * ( 0 ) l

l ^ ( £)>. (42)

a

a  =

1
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FIG. 16: (Color online) Conductivity a  (in units of e2/h) as a function of charge carrier concentration n e (in units of electrons 
per atom) for different resonant impurity (ed =  — i/16, V =  2i) or vacancy concentrations (nx) : (a) ni  =  n x =  0.1%, (b) 0.2%, 
(c) 0.3%, (d) 0.5%, (e) 1%, (f) 5%. Numerical calculations are performed on samples containing (a) 8192 x 8192 and (b-f) 
4096 x 4096 carbon atoms. The charge carrier concentrations n e are obtained by the integral of the corresponding density of 
states represented in Fig. 3.

The accuracy of the  quasieigenstates in Eq. (21) are 
m ainly determ ined by the tim e interval and to ta l tim e 
steps used in the Fourier transform . The m ain lim itation  
of the num erical calculations using Eq. (21) is the size 
of the physical m em ory th a t can be used to  store the 
quasieigenstates |^  (e)>.

We used the algorithm  presented above to  calculate the 
DC conductivity  of single layer graphene w ith vacancies 
or resonant im purities. The results are shown in Fig. 16. 
As we can see from the num erical results, there is p la teau

of the  order of the m inim um  conductivity 63 4e2/n h  in the 
vicinity of the neu tra lity  point, in agreem ent w ith theo
retical expectations64. F inite concentrations of resonant 
im purities lead to  the  form ation of a low energy im pu
rity  band  (see increased DOS a t low energies in Fig. 3 ). 
At im purity  concentrations of the  order of a few percent 
(Fig. 16 e, f) this im purity  band  contributes to  the con
ductiv ity  and can lead to  a m axim um  of a  in the  m idgap 
region. The im purity  band  can host two electrons per 
im purity. For im purity  concentrations below ~  5%, this
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FIG. 17: (Color online) Red dots: conductivity a  (in units 
of e2/h)  as a function of K F (in units of A-1 ) for reso
nant impurity (top panel, ed =  —i/16, V =  2t) or va
cancy (bottom panel). The concentration of the impurities 
is n i =  n x =  0.01%. Numerical calculations are performed on 
samples containing 4096 x 4096 carbon atoms. Black lines: 
fit of Eq. (44) with q0 =  0.01A 1, R =  1.25A for n i =  0.01%, 
and qo = 0 , R =  1.28A for n x =  0.01%.

leads to  a p lateau-shaped m inim um  of w idth 2n* (or 2nx) 
in the conductivity  vs. n e curves around the neutra lity  
point. Analyzing experim ental d a ta  of the  p lateau  w idth 
(similar to  the analysis for N2O 4 acceptor sta tes in Ref. 
25) can therefore yield an independent estim ate of im pu
rity  concentration.

Beyond the p lateau  around the neu tra lity  point, the 
conductivity  is inversely proportional to  the concentra
tion of the im purities, and approxim ately proportional to  
the  carrier concentration n e. This is consistent w ith the 
approach based on the B oltzm ann equation, which in the 
lim it of resonant im purities w ith V f r o ,  yields for the 
conductivity 13 >19>29>50

a  «  (2e2/ h )  — —  In2 
n  ni

(43)

carbon atom , and D  is of order of the bandw idth. Equan- 
tion (43) yields the same behavior as for vacancies21. 
Note th a t for the case of the resonance shifted w ith re
spect to  the neu tra lity  point the consideration of Ref. 13 
leads to  the dependence

a  «  (qo ±  kp ln k p R) (44)

where n e =  EFp/ D 2 is the  num ber of charge carriers per

where ±  corresponds to  electron and hole doping, respec
tively, and R  is the  effective im purity  radius. The Boltz
m ann approach does not work near the  neu tra lity  point 
where quantum  corrections are dom inant 20,63,65. In the 
range of concentrations, where the B oltzm ann approach 
is applicable the conductivity  as a function of energy fits 
very well to  the dependence given by Eq. (44), as for ex
ample shown in Fig. (17), w ith q0 =  0.01Â , R  =  1.25Â 
for n  =  0.01%, and q0 =  0, R  =  1.28Â for n x =  0.01%. 
The relation of these results to  experim ent is discussed 
in Ref. 29.

The advantage of the  m ethod used here for the  calcu
lation of the DC conductivity  is th a t the results do not 
depend on the upper tim e limit in the integration  since 
the contributions to  the in tegrand in E q .(41) correspond
ing to  different energies tends to  zero fast enough when 
the tim e is large. The propagation  tim e for the  integra
tion  depends on the concentration of the disorder, i.e., 
larger concentration leads to  faster decay of the correc
tions. The disadvantage of this m ethod is th a t a lot of 
m em ory m ay be needed to  store the coefficients of m any 
quasieigenstates. Furtherm ore, since |e) in Eq. (42) con
ta ins the factor 1 / |(y>|^ (e))|, th is m ay cause problem s 
when |(y>|^ (e))| is very small. For example, when us
ing th is m ethod to  calculate the Hall conductivity  in the 
presence of strong m agnetic fields, tiny  |(y>|^ (e))| (out 
the Landau levels) will leads to  large fluctuations of the 
calculated conductivity. Nevertheless, the conductivities 
w ithout the presence on the m agnetic filed in our paper 
are agreem ent w ith the results reported  in Refs. 37 (hy
drogenated graphene) and 38 (graphene w ith vacancies), 
and b o th  papers are based on the num erical calculation 
of the Kubo-G reenw ood formula, as proposed in Ref.39. 
To calculate the Hall conductivity  accurately our m ethod 
should be developed further.

VII. SUM M A R Y

We have presented a detailed num erical study  of the 
electronic properties of single-layer graphene w ith res
onant ( “hydrogen” ) im purities and vacancies w ithin a 
framework of noninteracting tight-binding model on the 
honeycomb lattice. The algorithm s developed in this 
paper are based on the num erical solution of the time- 
dependent Schrödinger equation, the  fundam ental opera
tion  being the action of the evolution operator on a gen
eral wave vector. We do not need to  diagonalize the 
H am iltonian m atrix  to  obtain  the eigenstates and there
fore the  m ethod can be applied to  very large crystallites
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which contains millions of atoms. Furthermore since the 
operation of the Hamiltonian matrix on a general wave 
vector does not require any special symmetry of the ma
trix elements, this flexibility can be exploited to study 
different kinds of disorder and impurities in the nonin
teracting tight-binding model.

The algorithms for the calculation of density of states, 
quasieigenstates, AC and DC conductivities, are applica
ble to any ID, 2D and 3D lattice structure, not only to 
a single layer of carbon atoms arranged in a honeycomb 
lattice. The calculation for the electronic properties of 
multilayer graphene can be easily obtained by adding the 
hoping between the corresponding atoms of different lay
ers.

Our computational results give a consistent picture of 
behavior of the electronic structure and transport prop
erties of functionalized graphene in a broad range of con
centration of impurities (from graphene to graphane). 
Formation of impurity bands is the main factor deter
mining electrical and optical properties at intermediate 
impurity concentrations, together with the appearance of 
a gap near the graphane limit.
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IX. A P P E N D IX  A

Suppose x  G [—1,1], then

CO

e - izæ =  Jo(z) +  2 ] T  H ) m Jm (z) Tm ( x ) , (45)
m=  1

where Jm {z) is the Bessel function of integer order to, and 
Tm (x) =  cos [to arccos (x)] is the Chebyshev polynomial 
of the first kind. Tm (x) obeys the following recurrence 
relation:

Tm+i (x) +  Tm_ i (x) = 2xTm (x) . (46)

Since the Hamiltonian H  has a complete set of eigen
vectors |E n ) with real valued eigenvalues E n , we can ex
pand the wave function |</>(0)) as a superposition of the 
eigenstates | n) of H

N

(47)

and therefore

n= 1

N

Im  = e - » H |</>(0)) =  E  e~UEn \n ) • (48)

By using the inequality

| ] T x n| < E ||X«H’ (49)

with the Hamiltonian H  of E q .(l) we find

Imax +  \£d\ +  \V\max + 6tmax -\\H\\b =  3t
> max{£„}. (50)

Introduce new variables t = t  ||-H"||6 and En = Enj  ||-H"||6, 
where E n are the eigenvalues of a modified Hamiltonian 
H  = H /  \\H\\b, tha t is

H  \En ) = Ê n \En ) . (51)

By using Eq. (45), the time evolution of |<f>(t)) can be 
represented as

I m  =

CO

J 0(t)T0 ( # ) + 2 ^  J m (t) f m ( t f )
m=  1

l #o ) > ,

(52)

where the modified Chebyshev polynomial Tm (̂ Eri Ĵ is

Tm (B n) =  , (53)

obeys the recurrence relation

Tm+1^ \ 4 > )  = -2 iH T m (h ) \4>)+ f m_ i  ( h ) \4>), 

To ( h )  \4>) = I\4>), 7 i ( h )  \4>) = - i H  \4>). (54)

X. A P P E N D IX  B

In general, a function f ( x )  whose values are in the 
range [—1,1] can be expressed as

1
f ( x ) =  7)CoTo ( x ) +  ^ 2 c kT k (x) (55)

k= 1

where T k (x ) =  cos (k arccosx) and the coefficients cj. are

J .
Cfc =  -  [  0 f ( x ) T k (x) .

a/1  —  x 2 '
(56)

Let x  =  cos 0 , then T k (x ) =  T k (cos 0) =  cos kO, and

2 r
Cfc =  — / ƒ (cos 0) cos kOdO

k J o

Re
N - 1

- Y  fN  ^  Jn= 0

27r n \  :-----cos —  l e 2*»1 (57)

n= 1

which can be calculated by the fast Fourier transform.
For the operators ƒ =  ze~$H j  ( l +  where z =

exp (/3/x) is the fugacity, we normalize H  such tha t H  =
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H /  11if 11 has eigenvalues in the  range [—1,1] and pu t ¡3 = 
¡3\\H\\. Then

ƒ H
- ß H

1 +  ze

OO

] T c fcTfc( i / ) ,  (58)
k= 0

where c& are the  Chebyshev expansion coefficients of

z e - ? x
f ( x )

1 +  ze ßx
(59)

and the Chebyshev polynom ial Tk ( H)  can be obtained 
by the recursion relations

with

Tk+i ( h ) - 2 H T k ( h ) + T k ~ i  ( h ) =  0, (60)

(61)To H i  = 1 , T i  ( H i  = H.

XI. A P P E N D IX  C

The random  superposition s ta te  (RSS) \<p) in the  real 
space can be represented in the energy eigenbases as

\tp) = ^ 2 A n \n )  . (62)
n

By using the expression Eq. (21) of | i '  (e)) we obtain

M *  (e))\ =  l j 2 \ A n\2 S ( E - E n), (63) 
V n

and

1
■ ]T ,4 n <5(e - £ n ) |n ) .  (64)

|£) E „ K I  Z ö ( e - E n

Therefore the conductivity  in Eq. (41) becomes

1 P ( £ )
V E  n \An \2 6 ( e - E n

diRe[e

x ( k \ J \ m )  (m\ J ' Ŝ2 / A n5 (e -  E n ) |n)]

P ( £ ) -Re ] T  A n A l
^ (£ Hn ,

x (k\ J  j to) (to j J  j n) 5 (e — E m ) S (e — E n ) . (65)

Dividing k n in to  two p arts  w ith k = n  and k ^  n, 
the conductivity  reads

P ( £ ) - R e V K I 2
m . nV E n \ A n \ 2 S ( e - E n 

x (n| J  I to) (to j J  j n) 5 (e — E m ) S (e — E n

P( £) -Re ] T  A nA*k
^ J 2 „ \ A n \  S  (e E n) m ^ n 

x (A:| J  |m)  (m| J  |n) (5 (e -  E m )S  (e -  E n ) ,
(66)

W hen the sample size N  —> oo, the RSS in real space 
is equivalent to  a RSS in the energy basis, and we have 
\An \ k, 1/N,  p (e) «  Y , n \A n\2 H e ~  E n)- T hen the 
second term s in above expression is close to  zero because 
of the cancellation of the  random  complex coefficients 
A nA*k . Thus, we have proven th a t

P O O

/  dtKe [e~iEt (<p\ J e iHtJ  |e)]
Jo

p ( £) v
- ^ R e y ^  (n\ J \ m )  (m| J \ n )  5 (e -  E m ) 5 (e -  E n ) ,

m , n

(67)

which is ju s t Eq. (40).

Introducing

l¥>i (t))x = e~iHtJ x W) , 1̂ 1 (t ))y = e - ' m J \<p) , (68)

the DC conductivities a t zero tem pera tu re  is given by

a aß ( e , T  = 0) = — J  Re \e~let a (ipi (t) |Jg |e )]  dt.

(69)

The DC conductivity  for tem pera tu re  T  > 0 is

a aß = Y ^ 1 ~  f  (£)1 ƒ (£) a <*ß (e ’ T  =  °) • (70)
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