31,042 research outputs found

    Spin-1 Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies

    Get PDF
    Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and single-ion anisotropies in an external field are studied. Our findings confirm and refine recent results by Sengupta and Batista, Physical Review Letters 99, 217205 (2007) (2007), on the same model applying Monte Carlo techniques. In particular, we present evidence for two types of biconical (or supersolid) and for two types of spin-flop (or superfluid) structures. Basic features of the quantum phase diagram may be interpreted qualitatively in the framework of classical spin models.Comment: Ref. 1 corrected (also in the abstract

    An ab-initio study of the electron-phonon coupling within a Cr(001)-surface

    Get PDF
    It is experimentally well established that the Cr(001)-surface exhibits a sharp resonance around the Fermi level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle dz2 surface state renormalised by electron-phonon coupling or the orbital Kondo effect involving the degenerate dxz/dyz states. In this work we examine the electron-phonon coupling of the Cr(001)-surface by means of ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2 surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement factors are not in agreement with the experimental data even if we use realistic values for the temperature range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally an electron-phonon mass-enhancement factor of 0.70~0.10 is obtained, which is not in agreement with our calculated values of 0.19 and 0.16. Therefore, we conclude that the experimentally observed resonance at the Cr(001)-surface is not due to polaronic effects, but due to electron-electron correlation effects

    Quantum Heisenberg antiferromagnetic chains with exchange and single--ion anisotropies

    Full text link
    Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), (10), and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.Comment: 4 pages, 5 figures, ICM0

    Automatic sense clustering in EuroWordNet

    Get PDF
    This paper addresses ways in which we envisage to reduce the fine-grainedness of WordNet and express in a more systematic way the relations between its numerous sense distinctions. In the EuroWordNet project, we have distinguished various automatic methods for grouping senses into more coarse-grained sense groups. These resulting clusters reflect aspects of lexical organization, displaying a variety of semantic regularities or generalizations. In this way, the compatibility of the language-specific wordnets in the EuroWordNet multilingual knowledge base is increased

    Classical and quantum anisotropic Heisenberg antiferromagnets

    Full text link
    We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding, in the quantum lattice gas description, to supersolid) phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.Comment: 13 pages, 14 figures, conferenc

    Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab-initio study

    Get PDF
    From microscopic point-dipole model calculations of the screening of the Coulomb interaction in non-polar systems by polarizable atoms, it is known that screening strongly depends on dimensionality. For example, in one dimensional systems the short range interaction is screened, while the long range interaction is anti-screened. This anti-screening is also observed in some zero dimensional structures, i.e. molecular systems. By means of ab-initio calculations in conjunction with the random-phase approximation (RPA) within the FLAPW method we study screening of the Coulomb interaction in FexOy clusters. For completeness these results are compared with their bulk counterpart magnetite. It appears that the onsite Coulomb interaction is very well screened both in the clusters and bulk. On the other hand for the intersite Coulomb interaction the important observation is made that it is almost contant throughout the clusters, while for the bulk it is almost completely screened. More precisely and interestingly, in the clusters anti-screening is observed by means of ab-initio calculations
    corecore