144 research outputs found

    Integration of Microfluidics, Photonic Integrated Circuits and Data Acquisition and Analysis Methods in a Single Platform for the Detection of Swine Viral Diseases

    Full text link
    [EN] Simple Summary: The control of several swine viral diseases relies mainly on evidence-based prevention protocols due to the lack of effective treatments or vaccines. To design these protocols, laboratory investigation of viral infections is critical to confirm their occurrence and determine their epizootiology. However, laboratory confirmation of certain swine viral diseases is a time-consuming and labor-intensive process, requiring scientific personnel with relevant expertise. Point-of-Care (POC) diagnostics are tests and devices that provide clinically relevant information on-site, facilitating decision-makers to swiftly take countermeasures for disease control. In the present study, novel photonic biosensors were integrated into a single, automated POC device that can record and analyze changes in the sensors' refractive index, allowing the detection of Porcine Parvovirus (PPV) and Porcine Circovirus 2 (PCV-2) in oral fluids within 75 min. The objective of this work was to validate this device using reference and field samples (oral fluids). The system was able to detect PPV and PCV-2 in oral fluid samples satisfactorily. The device can be directly deployed in farms for the fast diagnosis of these diseases, contributing to farm biosecurity.Viral diseases challenge the health and welfare of pigs and undermine the sustainability of swine farms. Their efficient control requires early and reliable diagnosis, highlighting the importance of Point of Care (POC) diagnostics in veterinary practice. The objective of this study was to validate a novel POC system that utilizes Photonic Integrated Circuits (PICs) and microfluidics to detect swine viral pathogens using oral fluids and Porcine Parvovirus (PPV) and Porcine Circovirus 2 (PCV-2) as proofs of concept. The sensitivity and specificity of the device were calculated for both viruses, and Receiver Operating Characteristic (ROC) curves were drawn. PPV had an Area Under Curve (AUC) value of 0.820 (95% CI: 0.760 to 0.880, p < 0.0001), and its optimal efficiency threshold of detection shifts was equal to 4.5 pm (68.6% sensitivity, 77.1% specificity and Limit of Detection (LOD) value 10(6) viral copies/mL). PCV-2 had an AUC value of 0.742 (95% CI: 0.670 to 0.815, p < 0.0001) and an optimal efficiency threshold of shifts equal to 6.5 pm (69.5% sensitivity, 70.3% specificity and LOD 3.3 x 10(5) copies/mL). In this work, it was proven that PICs can be exploited for the detection of swine viral diseases. The novel device can be directly deployed on farms as a POC diagnostics tool.This research was funded by E.U.'s H2020 SWINOSTICS project under the grant agreement ID 771649.Manessis, G.; Mourouzis, C.; Griol Barres, A.; Zurita-Herranz, D.; Peransi, S.; Sánchez, C.; Giusti, A.... (2021). Integration of Microfluidics, Photonic Integrated Circuits and Data Acquisition and Analysis Methods in a Single Platform for the Detection of Swine Viral Diseases. Animals. 11(11):1-18. https://doi.org/10.3390/ani11113193118111

    Familial neuralgia of occipital and intermedius nerves in a Chinese family

    Get PDF
    Cranial nerve neuralgia usually occurs sporadically. Nonetheless, familial cases of trigeminal neuralgia are not uncommon with a reported incidence of 1–2%, suggestive of an autosomal dominant inheritance. In contrast, familial occipital neuralgia is rarely reported with only one report in the literature. We present a Chinese family with five cases of occipital and nervus intermedius neuralgia alone or in combination in three generations. All persons afflicted with occipital neuralgia have suffered from paroxysmal ‘electric wave’-like pain for years. In the first generation, the father (index patient) was affected, in the second generation all his three daughters (with two sons spared) and in the third generation a daughter’s male offspring is affected. This familial pattern suggests an X-linked dominant or an autosomal dominant inheritance mode

    Mindfulness in Action: Discovering How U.S. Navy Seals Build Capacity for Mindfulness in High-Reliability Organizations (HROs)

    Get PDF
    This study of US Navy Sea Air and Land (SEAL) commandos contributes to research investigating mindfulness in High-Reliability Organizations (HROs) by identifying the individual and collective influences that allow SEALs to build capacity for mindful behaviors despite the complexity of their missions, the unpredictability of their operating environments, and the danger inherent in their work. Although the HRO literature identifies a number of hallmarks of reliability, less attention is paid to how mindfulness is operationally achieved in situ by individuals on the frontline working in HROs. This study addresses this gap using a multi-phase, multi-method investigation of US Navy SEALs, identifying new links between individual mindfulness attributes (comfort with uncertainty and chaos) and collective mindfulness influences (a positive orientation towards failure) that combine to co-create a phenomenon we call 'mindfulness in action'. Mindfulness in action occurs when HROs achieve an attentive yet flexible focus capable of incorporating multiple—sometimes competing—realities in order to assess alternative solutions and take action in dynamic situations. By providing a more nuanced conceptualization of the links between individual mindfulness attributes and collective mindfulness influences, this paper opens up new avenues of discovery for a wide range of reliability-seeking organizations.This study of US Navy Sea Air and Land (SEAL) commandos contributes to research investigating mindfulness in High-Reliability Organizations (HROs) by identifying the individual and collective influences that allow SEALs to build capacity for mindful behaviors despite the complexity of their missions, the unpredictability of their operating environments, and the danger inherent in their work. Although the HRO literature identifies a number of hallmarks of reliability, less attention is paid to how mindfulness is operationally achieved in situ by individuals on the frontline working in HROs. This study addresses this gap using a multi-phase, multi-method investigation of US Navy SEALs, identifying new links between individual mindfulness attributes (comfort with uncertainty and chaos) and collective mindfulness influences (a positive orientation towards failure) that combine to co-create a phenomenon we call 'mindfulness in action'. Mindfulness in action occurs when HROs achieve an attentive yet flexible focus capable of incorporating multiple—sometimes competing—realities in order to assess alternative solutions and take action in dynamic situations. By providing a more nuanced conceptualization of the links between individual mindfulness attributes and collective mindfulness influences, this paper opens up new avenues of discovery for a wide range of reliability-seeking organizations

    Functional effects of local thyroid hormone administration after sciatic nerve injury in rats

    No full text
    This study investigates potential functional effects of thyroid hormone (T3) on peripheral nerve regeneration in rats. Forty adult male Lewis rats were included in this study. After complete transection of the right sciatic nerve, the gap between the stumps was bridged with a silicone tube. In the first experimental group (group A, n = 12), T3 solution was used to fill the tube, whereas a sterile buffer solution was used in nontreated rats, (group B, n = 12). Additionally, sham operation with surgical incision and mobilization of the sciatic nerve without any other intervention was performed (group C, n = 10). In a few animals, α-segment of the nerve was excised and the stumps were reversed to exclude the possibility of regeneration (group D, n = 6). The process of peripheral nerve regeneration was assessed by functional indices at 3, 6, 9, 13, and 17 weeks postoperatively. Mid-stance angle, at the ankle, measured in degrees, was used as a kinematic index and the withdrawal reflex (measured in grams of applied force) was used to evaluate the return of sensory function. Kinematic indexes were not different between the groups A and B at all time points of the evaluation. Sensory function was significantly different in T3-treated animals compared with buffer-treated control group (x vs. y P = 0.031) at 9 weeks. Thereafter, sensory function was comparable between groups. In conclusion, T3 seems to accelerate the return of sensory function after complete transection of the sciatic nerves in Lewis rats without a significant effect on motor nerve recovery. © 2008 Wiley-Liss, Inc

    Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor α1 in cardiac repair

    No full text
    Thyroid hormone (TH) appears to have a critical role in cardiac repair after injury beyond its role in development and metabolism homeostasis. This unique action is due to the fact that TH effect on the heart is shown to be differentiated depending on its administration on injured or healthy myocardium. Thus, TH can limit ischemia–reperfusion injury via a fine balance between pro-apoptotic and pro-survival signaling pathways. This response is thyroid hormone receptor (TRα1) dependent. Furthermore, an interaction between stress-induced growth kinase signaling and TRα1 is shown to occur and determine postischemic remodeling and cardiac recovery depending on the availability of TH. This new evidence is consistent with clinical observations showing the cardioprotective effect of TH treatment in cardiac surgery, transplantation and heart failure. TH and/or thyroid analogs may be novel agents in treating heart diseases. © 2014, Springer Science+Business Media New York

    The emerging role of TRα1 in cardiac repair: Potential therapeutic implications

    No full text
    Thyroid hormone (TH) is critical for adapting living organisms to environmental stress. Plasma circulating tri-iodothyronine (T3) levels drop in most disease states and are associated with increased oxidative stress. In this context, T3 levels in plasma appear to be an independent determinant for the recovery of cardiac function after myocardial infarction in patients. Thyroid hormone receptor 1 (TR1) seems to be crucial in this response; TR1 accumulates to cell nucleus upon activation of stress induced growth kinase signaling. Furthermore, overexpression of nuclear TR1 in cardiomyocytes can result in pathological or physiological growth (dual action) in absence or presence of its ligand, respectively. Accordingly, inactivation of TR1 receptor prevents reactive hypertrophy after myocardial infarction and results in heart failure with increased phospholamban (PLB) expression and marked activation of p38MAPK. In line with this evidence, TH is shown to limit ischemia/reperfusion injury and convert pathologic to physiologic growth after myocardial infarction via TR1 receptor. TR1 receptor may prove to be a novel pharmacological target for cardiac repair/regeneration therapies. © 2014 Constantinos Pantos and Iordanis Mourouzis
    corecore