297 research outputs found

    Third quantization: a general method to solve master equations for quadratic open Fermi systems

    Full text link
    The Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n x 4n matrix, provided that all Lindblad bath operators are linear in the fermionic variables. The method is applied to the explicit construction of non-equilibrium steady states and the calculation of asymptotic relaxation rates in the far from equilibrium problem of heat and spin transport in a nearest neighbor Heisenberg XY spin 1/2 chain in a transverse magnetic field.Comment: 24 pages, with 8 eps figures - few minor corrections to the published version, e.g. anti-symmetrizing the matrix given by eq. (27

    A stochastic model of anomalous heat transport: analytical solution of the steady state

    Full text link
    We consider a one-dimensional harmonic crystal with conservative noise, in contact with two stochastic Langevin heat baths at different temperatures. The noise term consists of collisions between neighbouring oscillators that exchange their momenta, with a rate γ\gamma. The stationary equations for the covariance matrix are exactly solved in the thermodynamic limit (NN\to\infty). In particular, we derive an analytical expression for the temperature profile, which turns out to be independent of γ\gamma. Moreover, we obtain an exact expression for the leading term of the energy current, which scales as 1/γN1/\sqrt{\gamma N}. Our theoretical results are finally found to be consistent with the numerical solutions of the covariance matrix for finite NN.Comment: Minor changes in the text. To appear in Journal of Physics

    Displacement autocorrelation functions for strong anomalous diffusion: A scaling form, universal behavior, and corrections to scaling

    Get PDF
    Strong anomalous diffusion is characterized by asymptotic power-law growth of the moments of displacement, with exponents that do not depend linearly on the order of the moment. The exponents concerning small-order moments are dominated by random motion, while higher-order exponents grow by faster trajectories, such as ballistic excursions or "light fronts." Often such a situation is characterized by two linear dependencies of the exponents on their order. Here, we introduce a simple exactly solvable model, the fly-and-die (FnD) model, that sheds light on this behavior and on the consequences of light fronts on displacement autocorrelation functions in transport processes. We present analytical expressions for the moments and derive a scaling form that expresses the long-time asymptotics of the autocorrelation function in terms of the dimensionless time difference (t(2) - t(1))/t(1). The scaling form provides a faithful collapse of numerical data for vastly different systems. This is demonstrated here for the Lorentz gas with infinite horizon, polygonal billiards with finite and infinite horizon, the Levy-Lorentz gas, the slicer map, and Levy walks. Our analysis also captures the system-specific corrections to scaling

    Exact solution of Markovian master equations for quadratic fermi systems: thermal baths, open XY spin chains, and non-equilibrium phase transition

    Full text link
    We generalize the method of third quantization to a unified exact treatment of Redfield and Lindblad master equations for open quadratic systems of n fermions in terms of diagonalization of 4n x 4n matrix. Non-equilibrium thermal driving in terms of the Redfield equation is analyzed in detail. We explain how to compute all physically relevant quantities, such as non-equilibrium expectation values of local observables, various entropies or information measures, or time evolution and properties of relaxation. We also discuss how to exactly treat explicitly time dependent problems. The general formalism is then applied to study a thermally driven open XY spin 1/2 chain. We find that recently proposed non-equilibrium quantum phase transition in the open XY chain survives the thermal driving within the Redfield model. In particular, the phase of long-range magnetic correlations can be characterized by hypersensitivity of the non-equilibrium-steady state to external (bath or bulk) parameters. Studying the heat transport we find negative thermal conductance for sufficiently strong thermal driving, as well as non-monotonic dependence of the heat current on the strength of the bath coupling.Comment: 24 pages, 12 figures, submitted to New Journal of Physics, Focus issue "Quantum Information and Many-Body Theory

    Determinants of sub-central European government debt

    Full text link
    [EN] The aim of this paper is to analyse the determinants of sub-central government debt in Europe (Italy, France, Austria, Germany, Belgium and Spain) through estimation for each State based on corresponding panel data from 1996 to 2010. Furthermore, we estimate the debt model using a joint sample, consolidating conclusions on the most influential variables in terms of public debt. A comparative analysis of institutional frameworks in Europe shows that relationships between central and sub-central tax authorities have common traits, although the extent of change in each country remains unknown. In sum, this study shows that sub-sovereign government budgets are counter-cyclical, that economies of scale are present, which the golden rule of public finance is followed, that population growth and lower per capita financing lead to higher debt levels, and that regions characterised by higher debt/GDP ratios tend to have lower future deficits.Jannone Bellot, N.; Martí Selva, ML.; García Menéndez, L. (2017). Determinants of sub-central European government debt. The Spanish Review of Financial Economics. 15(2):52-62. doi:10.1016/j.srfe.2017.04.001S526215

    Introducing Axial Chirality into Mesoionic 4,4′-Bis(1,2,3-triazole) Dicarbenes

    Get PDF
    Mesoionic 4,4′-bis(1,2,3-triazole-5,5′-diylidene) Rh(I) complexes having a C2 chiral 4,4′-axis were accessed from 3-alkyltriazolium salts in virtually complete de. Their structure and configurational integrity were assessed by NMR spectroscopy, X-ray crystallography, and chiral HPLC. Computational analysis of the MICs involved in the reaction suggested the formation of a highly stable and unprecedented cation-carbene intermediate species, which could be evidenced experimentally by cyclic voltammetry analysis

    T-Wave Morphology Restitution Predicts Sudden Cardiac Death in Patients With Chronic Heart Failure

    Get PDF
    BACKGROUND: Patients with chronic heart failure are at high risk of sudden cardiac death (SCD). Increased dispersion of repolarization restitution has been associated with SCD, and we hypothesize that this should be reflected in the morphology of the T-wave and its variations with heart rate. The aim of this study is to propose an electrocardiogram (ECG)-based index characterizing T-wave morphology restitution (TMR), and to assess its association with SCD risk in a population of chronic heart failure patients. METHODS AND RESULTS: Holter ECGs from 651 ambulatory patients with chronic heart failure from the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study were available for the analysis. TMR was quantified by measuring the morphological variation of the T-wave per RR increment using time-warping metrics, and its predictive power was compared to that of clinical variables such as the left ventricular ejection fraction and other ECG-derived indices, such as T-wave alternans and heart rate variability. TMR was significantly higher in SCD victims than in the rest of patients (median 0.046 versus 0.039, P<0.001). When TMR was dichotomized at TMR=0.040, the SCD rate was significantly higher in the TMR≥0.040 group (P<0.001). Cox analysis revealed that TMR≥0.040 was strongly associated with SCD, with a hazard ratio of 3.27 (P<0.001), independently of clinical and ECG-derived variables. No association was found between TMR and pump failure death. CONCLUSIONS: This study shows that TMR is specifically associated with SCD in a population of chronic heart failure patients, and it is a better predictor than clinical and ECG-derived variables
    corecore