257 research outputs found

    Monensin and forskolin inhibit the transcription rate of sucrase-isomaltase but not the stability of its mRNA in Caco-2 cells

    Get PDF
    AbstractTreatment of Caco-2 cells with forskolin (25 μM) or monensin (1 μM) has previously been shown to cause a marked decrease in the level of sucrase-isomaltase (SI) mRNA, without any effect on the expression of dipeptidylpeptidase IV (DPP-IV). In the present work, we report that there is no significant difference in the stability of SI mRNA between control and treated cells. On the other hand, we demonstrate a decrease in the transcription rate of SI mRNA which is sufficient to account for the decrease in the steady-state level of SI mRNA both in forskolin- and monensin-treated Caco-2 cells

    RP-DeLP: a weighted defeasible argumentation framework based on a recursive semantics

    Get PDF
    In this paper we first define a recursive semantics for warranted formulas in a general defeasible argumentation framework by formalizing a notion of collective (non-binary) conflict among arguments. The recursive semantics for warranted formulas is based on the fact that if the argument is rejected, then all arguments built on it should also be rejected. The main characteristic of our recursive semantics is that an output (extension) of a knowledge base is a pair of sets of warranted and blocked formulas. Arguments for both warranted and blocked formulas are recursively based on warranted formulas but, while warranted formulas do not generate any collective conflict, blocked conclusions do. Formulas that are neither warranted nor blocked correspond to rejected formulas. Second we extend the general defeasible argumentation framework by attaching levels of preference to defeasible knowledge items and by providing a level-wise definition of warranted and blocked formulas. Third we formalize the warrant recursive semantics for the particular framework of Possibilistic Defeasible Logic Programming, we call this particular framework Recursive Possibilistic Defeasible Logic Programming (\mbox{RP-DeLP} for short), and we show its relevance in the scope of Political debates. An RP-DeLP program may have multiple outputs in case of circular definitions of conflicts among arguments. So, we tackle the problem of which output one should consider for an RP-DeLP program with multiple outputs. To this end we define the maximal ideal output of an RP-DeLP program as the set of conclusions which are ultimately warranted and we present an algorithm for computing them in polynomial space and with an upper bound on complexity equal to P^{NP}. Finally, we propose an efficient and scalable implementation of this algorithm that is based on implementing the two main queries of the system, looking for valid arguments and collective conflicts between arguments, using SAT encodings. We perform an experimental evaluation of our SAT based approach when solving test sets of instances with single and multiple preference levels for defeasible knowledge.The authors are very thankful to the anonymous reviewers for their helpful and constructive comments. This research was partially supported by the Spanish projects ARINF (TIN2009- 14704-C03-01), TASSAT (TIN2010-20967-C04-03), EdeTRI (TIN2012-39348-C02-01) and AT (CONSOLIDER- INGENIO 2010, CSD2007-00022)

    La construcció institucional i jurídica de la mediació

    Get PDF
    Aquest capítol aborda els aspectes jurídics principals de la mediació recollits a la legislació catalana (com ara el seu concepte, els principis, l'àmbit subjectiu i objectiu, el procediment i els efectes jurí-dics) per tal d'oferir la construcció jurídica actual de la institució i fer propostes de cara a una futura llei general de mediació

    Formalisation and logical properties of the maximal ideal recursive semantics for weighted defeasible logic programming

    Get PDF
    Possibilistic defeasible logic programming (P-DeLP) is a logic programming framework which combines features from argumentation theory and logic programming, in which defeasible rules are attached with weights expressing their relative belief or preference strength. In P-DeLP,a conclusion succeeds if there exists an argument that entails the conclusion and this argument is found to be undefeated by a warrant procedure that systematically explores the universe of arguments in order to present an exhaustive synthesis of the relevant chains of pros and cons for the given conclusion. Recently, we have proposed a new warrant recursive semantics for P-DeLP, called Recursive P-DeLP (RP-DeLP for short), based on the claim that the acceptance of an argument should imply also the acceptance of all its sub-arguments which reflect the different premises on which the argument is based. This paper explores the relationship between the exhaustive dialectical analysis-based semantics of P-DeLP and the recursive-based semantics of RP-DeLP, and analyses a non-monotonic inference operator for RP-DeLP which models the expansion of a given program by adding new weighted facts associated with warranted conclusions. Given the recursive-based semantics of RP-DeLP, we have also implemented an argumentation framework for RP-DeLP that is able to compute not only the output of warranted and blocked conclusions, but also explain the reasons behind the status of each conclusion. We have developed this framework as a stand-alone application with a simple text-based input/output interface to be able to use it as part of other artificial intelligence systemsThis research was partially supported by the Spanish projects EdeTRI (TIN2012-39348-C02-01) and AT (CONSOLIDER- INGENIO 2010, CSD2007-00022)

    Description of stochastic and chaotic series using visibility graphs

    Full text link
    Nonlinear time series analysis is an active field of research that studies the structure of complex signals in order to derive information of the process that generated those series, for understanding, modeling and forecasting purposes. In the last years, some methods mapping time series to network representations have been proposed. The purpose is to investigate on the properties of the series through graph theoretical tools recently developed in the core of the celebrated complex network theory. Among some other methods, the so-called visibility algorithm has received much attention, since it has been shown that series correlations are captured by the algorithm and translated in the associated graph, opening the possibility of building fruitful connections between time series analysis, nonlinear dynamics, and graph theory. Here we use the horizontal visibility algorithm to characterize and distinguish between correlated stochastic, uncorrelated and chaotic processes. We show that in every case the series maps into a graph with exponential degree distribution P (k) ~ exp(-{\lambda}k), where the value of {\lambda} characterizes the specific process. The frontier between chaotic and correlated stochastic processes, {\lambda} = ln(3/2), can be calculated exactly, and some other analytical developments confirm the results provided by extensive numerical simulations and (short) experimental time series

    A logic programming framework for possibilistic argumentation: formalization and logical properties

    Get PDF
    In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studie

    On the biological role of Fraunhofer lines of the Sun

    Get PDF
    The important role of Fraunhofer lines formed in the solar atmosphere in the spectrum of the Sun for the biological evolution on Earth has been discussed. In vitro, laboratory experiments have been accomplished to substantiate the concept of the role of Fraunhofer lines as drivers of the evolution via impact on molecules of biological significance. As a practical application of the concept, successful results of clinical tests on humans have been obtained to demonstrate the possibility of non-medicinal means to be used for therapy in the cases of infectious deceases such as HIV/AIDS. The importance for human health of blurring Fraunhofer lines due to increasing atmospheric pollution has been emphasized

    Dynamics of Technology Upgrading of the Central and East European Countries in a Comparative Perspective: Analysis Based on Patent Data

    Get PDF
    This working paper explores patterns of technology upgrading as a three-dimensional process which consists of (i) intensity of technology upgrading, (ii) structural change, and (iii) interaction with the global economy. The specificity of our report is that we depict patterns of technology upgrading by relying entirely on patent data. We derive patent indicators to capture the three dimensions. Patent indicators for intensity of technology upgrading trace technological capabilities at the technology frontier (transnational patents) and behind the technology frontier (domestic/resident direct applications to national offices). Structural change in technological knowledge is depicted by the share of transnational patent applications in high technology fields and knowledge-intensive activities and by calculating a technological diversification index. To capture interaction with global economy in the upgrading process indicators measure technological knowledge sourcing across countries and interactions between foreign and indigenous actors. Based on 7 patent indicators covering the three upgrading dimensions the comparative analysis focuses on EU27 and its subregions and on the BRICS countries. According to the results, in 2011 CEECs were quite homogenous in their upgrading paths. A typical CEE economy in 2011 is well behind EU12 in terms of frontier technology intensity, domestic technology intensity, share of high tech patents and technology sourcing abroad. Moreover, its organizational capabilities are often less advanced. The CEE profile is much less coherent in terms of technology diversification/specialization and share of joint inventions. However, differences among CEECs are not significant. Still there are some notable national features. Poland, Romania and Slovenia have above average domestic technological intensity which reflects partly their sizes (Romania and Poland) and specific model of innovation system reliant on domestic R&D intensive firms (Slovenia). Latvia and Lithuania are specific in terms of high share of HTKI patents. CEE technology upgrading as depicted by patents is within the BRIC pattern (with exception of China which in terms of technology upgrading has de facto delinked from BRICS). In the BRIC context, the CEE characterize very open innovation system with a high share of coinventions and foreign actors exploiting local inventions. This reveals weak organizational capabilities to commercialize its own inventions. According to the results CEE grew during 1990s/2008 based on production, not technological capability. Their future growth will increasingly depend on building technological capabilities at world frontier level. Our analysis shows that the basis for such growth exists only to a limited extent and that speed of upgrading towards world frontier activities is well beyond required for catching up. Equally, our analysis shows that solutions for improved technology upgrading will need to be found with their existing innovation model of small open economies integrated into the EU

    Impact of survey geometry and super-sample covariance on future photometric galaxy surveys

    Get PDF
    Photometric galaxy surveys probe the late-time Universe where the density field is highly non-Gaussian. A consequence is the emergence of the super-sample covariance (SSC), a non-Gaussian covariance term that is sensitive to fluctuations on scales larger than the survey window. In this work, we study the impact of the survey geometry on the SSC and, subsequently, on cosmological parameter inference. We devise a fast SSC approximation that accounts for the survey geometry and compare its performance to the common approximation of rescaling the results by the fraction of the sky covered by the survey, fSKY, dubbed ‘full-sky approximation’. To gauge the impact of our new SSC recipe, that we call ‘partial-sky’, we perform Fisher forecasts on the parameters of the (w0, wa)-CDM model in a 3 × 2 point analysis, varying the survey area, the geometry of the mask, and the galaxy distribution inside our redshift bins. The differences in the marginalised forecast errors –with the full-sky approximation performing poorly for small survey areas but excellently for stage-IV-like areas– are found to be absorbed by the marginalisation on galaxy bias nuisance parameters. For large survey areas, the unmarginalised errors are underestimated by about 10% for all probes considered. This is a hint that, even for stage-IV-like surveys, the partial-sky method introduced in this work will be necessary if tight priors are applied on these nuisance parameters. We make the partial-sky method public with a new release of the public code PySSC
    • …
    corecore