196 research outputs found

    Διαχείριση φερτών υλών σε ταμιευτήρες

    Get PDF
    155 σ.Διαχείριση Φερτών Υλών σε ΤαμιευτήρεςΚυριάκος Ι. Κυριακίδη

    Persistent Currents and Dissipation in Narrow Bilayer Quantum Hall Bars

    Full text link
    Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical staggered current and gate voltage.Comment: 4 pgs. REVTeX, 3 eps figure

    The Effect of Fused 12-Membered Nickel Metallacrowns on DNA and their Antibacterial Activity

    Get PDF
    The synthesis, characterization and the biological study of a series of Ni(ll)2(carboxylato)2 [12- MCNi(II)N(shi)2(pko)2-4][12-MCNi(ii)N(sh03(pko)-4] (CH3OH)3(H3O) fused 12-membered metallacrowns with 10 metal ions and commercial available herbicides or anti-inflammatory drugs as carboxylato ligands are reported. All the compounds have a mixed ligand composition with salicylhydroxamic acid and di-2-pyridylketonoxime as chelate agents. The compounds construct metallacrown cores {[12-MCNi(n)N(sj02(pko)2-4][12-MCNi(ll)N(shO3(pko)-4]}2+ following the pattern [-Ni-O-N-]4. The neutral decanuclear [Ni(II)(A)]2[12-MCNi(II)N(shi)2(pko)2-4][12-MCNi(II)N(pko)3(pko)-4] fused metallacrown, consists of two [12-MCM(ox)N(ligand)-4] units the {Ni(ll)(A)[12-MCNi(II)N(shi)2(pko)2-4]} and {Ni(II)(A)[12-MCNi(II)N(shi)3(pko)-4]} with 1+ and 1- charge, respectively. Each metallacrown unit has four ring Ni(II) ions and one additional encapsulated Ni(II) ion in planar arrangement. The anionic unit is bonded with cationic one creating binuclear moieties. The herbicide or antiiflammatory carboxylato ligands are bridging the central octahedral nickel atom with a ring metal ion in a bindetate fashion. The effect on DNA and their antibacterial activity was examined. The changes in the mobility can be attributed to the altered structures of the pDNA treated with Ni(II) complexes. Evaluating the data of the antibacterial activity of the compounds tested, we can conclude that nickel complexes present strong antibacterial activity

    Incommensurate ground state of double-layer quantum Hall systems

    Full text link
    Double-layer quantum Hall systems possess interlayer phase coherence at sufficiently small layer separations, even without interlayer tunneling. When interlayer tunneling is present, application of a sufficiently strong in-plane magnetic field B>BcB_\parallel > B_c drives a commensurate-incommensurate (CI) transition to an incommensurate soliton-lattice (SL) state. We calculate the Hartree-Fock ground-state energy of the SL state for all values of BB_\parallel within a gradient approximation, and use it to obtain the anisotropic SL stiffness, the Kosterlitz-Thouless melting temperature for the SL, and the SL magnetization. The in-plane differential magnetic susceptibility diverges as (BBc)1(B_\parallel - B_c)^{-1} when the CI transition is approached from the SL state.Comment: 12 pages, 7 figures, to be published in Physical Review

    Ferromagnetic phase transition in a Heisenberg fluid: Monte Carlo simulations and Fisher corrections to scaling

    Full text link
    The magnetic phase transition in a Heisenberg fluid is studied by means of the finite size scaling (FSS) technique. We find that even for larger systems, considered in an ensemble with fixed density, the critical exponents show deviations from the expected lattice values similar to those obtained previously. This puzzle is clarified by proving the importance of the leading correction to the scaling that appears due to Fisher renormalization with the critical exponent equal to the absolute value of the specific heat exponent α\alpha. The appearance of such new corrections to scaling is a general feature of systems with constraints.Comment: 12 pages, 2 figures; submitted to Phys. Rev. Let

    A framework for the classification and prioritization of arrival and departure routes in Multi-Airport Systems Terminal Manoeuvring Areas

    No full text
    © 2015 American Institute of Aeronautics and Astronautics Inc, AIAA. All right reserved.Typically major cities (London, New York, Tokyo) are served by several airports effectively creating a Multi-Airport System or Metroplex. The operations of the Metroplex airports are highly dependent on one another, which renders their efficient management difficult. This paper proposes a framework for the prioritization of arrival and departure routes in Multi-Airport Systems Terminal Manoeuvring Areas. The framework consists of three components. The first component presents a new procedure for clustering arrival and departure flights into dynamic routes based on their temporal and spatial distributions through the identification of the important traffic flow patterns throughout the day of operations. The second component is a novel Analytic Hierarchy Process model for the prioritization of the dynamic routes, accounting for a set of quantitative and qualitative characteristics important for Multi-Airport Systems operations. The third component is a priority-based model for the facility location of the optimal terminal waypoints (fixes), which accounts for the derived priorities of each dynamic route, while meeting the required separation distances. The proposed Analytic Hierarchy Process model characteristics are validated by subject matter experts. The developed framework is applied to the London Metroplex case study

    Bloch oscillations of magnetic solitons in anisotropic spin-1/2 chains

    Full text link
    We study the quantum dynamics of soliton-like domain walls in anisotropic spin-1/2 chains in the presence of magnetic fields. In the absence of fields, domain walls form a Bloch band of delocalized quantum states while a static field applied along the easy axis localizes them into Wannier wave packets and causes them to execute Bloch oscillations, i.e. the domain walls oscillate along the chain with a finite Bloch frequency and amplitude. In the presence of the field, the Bloch band, with a continuum of extended states, breaks up into the Wannier-Zeeman ladder -- a discrete set of equally spaced energy levels. We calculate the dynamical structure factor in the one-soliton sector at finite frequency, wave vector, and temperature, and find sharp peaks at frequencies which are integer multiples of the Bloch frequency. We further calculate the uniform magnetic susceptibility and find that it too exhibits peaks at the Bloch frequency. We identify several candidate materials where these Bloch oscillations should be observable, for example, via neutron scattering measurements. For the particular compound CoCl_2.2H_2O we estimate the Bloch amplitude to be on the order of a few lattice constants, and the Bloch frequency on the order of 100 GHz for magnetic fields in the Tesla range and at temperatures of about 18 Kelvin.Comment: 31 single-spaced REVTeX pages, including 7 figures embedded with eps

    Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data

    Get PDF
    Atherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention strategies. In this work, a novel computational model is developed, which is used for simulation of plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). The model is validated using the serial imaging of CTCA comparing the simulated geometries with the real follow-up arteries. Additionally, we examine the predictive capability of the model to identify regions prone of disease progression. The results presented good correlation between the simulated lumen area (P<0.0001), plaque area (P<0.0001) and plaque burden (P<0.0001) with the realistic ones. Finally, disease progression is achieved with 80% accuracy with many of the computational results being independent predictors
    corecore