94 research outputs found

    Evolution of the magnetic phase transition in MnO confined to channel type matrices. Neutron diffraction study

    Full text link
    Neutron diffraction studies of antiferromagnetic MnO confined to MCM-41 type matrices with channel diameters 24-87 A demonstrate a continuous magnetic phase transition in contrast to a discontinuous first order transition in the bulk. The character of the magnetic transition transforms with decreasing channel diameter, showing the decreasing critical exponent and transition temperature, however the latter turns out to be above the N\'eel temperature for the bulk. This enhancement is explained within the framework of Landau theory taking into consideration the ternary interaction of the magnetic and associated structural order parameters.Comment: 6 pages pdf file, including 4 figures, uses revtex4.cl

    Structure of MnO nanoparticles embedded into channel-type matrices

    Full text link
    X-ray diffraction experiments were performed on MnO confined in mesoporous silica SBA-15 and MCM-41 matrices with different channel diameters. The measured patterns were analyzed by profile analysis and compared to numerical simulations of the diffraction from confined nanoparticles. From the lineshape and the specific shift of the diffraction reflections it was shown that the embedded objects form ribbon-like structures in the SBA-15 matrices with channels diameters of 47-87 {\AA}, and nanowire-like structures in the MCM-41 matrices with channels diameters of 24-35 {\AA}. In the latter case the confined nanoparticles appear to be narrower than the channel diameters. The physical reasons for the two different shapes of the confined nanoparticles are discussed.Comment: 8 pages, including 9 postscript figures, uses revtex4.cl

    ESR of MnO embedded in silica nanoporous matrices with different topologies

    Full text link
    Electron spin resonance (ESR) experiments were performed with antiferromagnetic MnO confined within a porous vycor-type glass and within MCM-type channel matrices. A signal from confined MnO shows two components from crystallized and amorphous MnO and depends on the pore topology. Crystallized MnO within a porous glass shows a behavior having many similarities to the bulk. In contrast with the bulk the strong ESR signal due to disordered "surface" spins is observed below the magnetic transition. With the decrease of channel diameter the fraction of amorphous MnO increases while the amount of crystallized MnO decreases. The mutual influence of amorphous and crystalline MnO is observed in the matrices with a larger channel diameter. In the matrices with a smaller channel diameter the ESR signal mainly originates from amorphous MnO and its behavior is typical for the highly disordered magnetic system.Comment: 7 pages pdf file, 5 figure

    Use of Physicochemical Method for Evaluation of Mucilage Producing Ability of the Linum Usitatissimum L. Seeds

    Get PDF
    Abstract In the modern medicine of many European countries flax is used as a medicament with a wide range of use. Wholesome effect of flax seeds is determined by the large amount of enveloping substances. This property is connected with content of mucilage up to 10% and glycoside linamarin. Flaxseed polysaccharides also possess antiinflammatory effect. Furthermore, mucilage production can be a chemosystematic characteric of intraspecific taxons. In literature intervarietal variability data is limited. Therefore, comparative evaluation of mucilage producing ability of flax seeds with different morphotypes is of interest. The research of micromorphological characteristics of seed coat and mucilage production dynamics was carried out and it was established that mucilage-producing cells are localized predominantly in the external layer of seed coat. It was established that Bahmalskiy, Nebesnyj, Kustanayskiy yantar varieties possess the highest level of mucilage production. Morphotype and varietal specificity of mucilage production are determined, consequently it can be used as a marker feature of L. usitatissimum new forms. The proposed technique is based on the determination of seed physicochemical characteristics and can be used for express analysis of the vegetal samples and their differentiation by the directions of use: as a fatty oil or mucilage-containing raw material. Keywords: Linum usitatissimum L. varieties, seeds, mucilage production, hydration dynamics, physicochemical method

    Subpicosecond shifting of the photonic band gap in a three-dimensional photonic crystal

    Get PDF
    We demonstrate spectral shifting of the photonic band gap in a three-dimensional photonic crystal within a time of less than 350 fs. Single 120 fs high-power optical pulses are capable to induce the transition from the semiconductor to the metallic phase of VO2 in the pores of our artificial silica opal. The phase transition produces a substantial decrease of the real part of the effective refractive index of the photonic crystal and shifts the spectral position of the photonic band gap. (C) 2005 American Institute of Physics

    The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula

    Get PDF
    Somatic embryogenesis (SE) is induced in vitro in Medicago truncatula 2HA by auxin and cytokinin but rarely in wild type Jemalong. The putative WUSCHEL (MtWUS), CLAVATA3 (MtCLV3) and the WUSCHEL-related homeobox gene WOX5 (MtWOX5) were investigated in M. truncatula (Mt) and identified by the similarity to Arabidopsis WUS, CLV3 and WOX5 in amino acid sequence, phylogeny and in planta and in vitro expression patterns. MtWUS was induced throughout embryogenic cultures by cytokinin after 24–48 h and maximum expression occurred after 1 week, which coincides with the induction of totipotent stem cells. During this period there was no MtCLV3 expression to suppress MtWUS. MtWUS expression, as illustrated by promoter-GUS studies, subsequently localised to the embryo, and there was then the onset of MtCLV3 expression. This suggests that the expression of the putative MtCLV3 coincides with the WUS-CLAVATA feedback loop becoming operational. RNAi studies showed that MtWUS expression is essential for callus and somatic embryo production. Based on the presence of MtWUS promoter binding sites, MtWUS may be required for the induction of MtSERF1, postulated to have a key role in the signalling required for SE induced in 2HA. MtWOX5 expressed in auxin-induced root primordia and root meristems and appears to be involved in pluripotent stem cell induction. The evidence is discussed that the homeobox genes MtWUS and MtWOX5 are “hijacked” for stem cell induction, which is key to somatic embryo and de novo root induction. In relation to SE, a role for WUS in the signalling involved in induction is discussed

    SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs

    Get PDF
    Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions
    • 

    corecore