156 research outputs found

    High-precision calculations of In I and Sn II atomic properties

    Full text link
    We use all-order relativistic many-body perturbation theory to study 5s^2 nl configurations of In I and Sn II. Energies, E1-amplitudes, and hyperfine constants are calculated using all-order method, which accounts for single and double excitations of the Dirac-Fock wave functions.Comment: 10 pages, accepted to PRA; v2: Introduction changed, references adde

    Predicting volleyball serve-reception at group level

    Get PDF
    In a group-serve-reception task, how does serve-reception become effective? We addressed "who" receives/passes the ball, what task-related variables predict action mode selection and whether the action mode selected was associated with reception efficacy. In 182 serve-receptions we tracked the ball and the receivers' heads with two video-cameras to generate 3D world-coordinates reconstructions. We defined receivers' reception-areas based on Voronoi diagrams (VD). Our analyses of the data showed that this approach was accurate in describing "who" receives the serve in 95.05% of the times. To predict action mode selection, we used variables related to: serve kinematics, receiver's movement and on-court positioning, the relation between receiver and his closest partner, and interactions between receiver-ball and receiver-target. Serve's higher initial velocities together with higher maximum height, as well as smaller longitudinal distances between receiver and target increased the chances for the use of the overhand pass. Conversely, decreasing alignment of the receiver with the ball and the target increased the chances of using the underhand-lateral pass. Finally, the use of the underhand-lateral pass was associated with lower quality receptions. Behavioural variability's relevance for serve-reception training is discussed

    Water production in comet 81P/Wild 2 as determined by Herschel/HIFI

    Get PDF
    The high spectral resolution and sensitivity of Herschel/HIFI allows for the detection of multiple rotational water lines and accurate determinations of water production rates in comets. In this Letter we present HIFI observations of the fundamental 1(10)-1(01) (557 GHz) ortho and 1(11)-0(00) (1113 GHz) para rotational transitions of water in comet 81P/Wild 2 acquired in February 2010. We mapped the extent of the water line emission with five point scans. Line profiles are computed using excitation models which include excitation by collisions with electrons and neutrals and solar infrared radiation. We derive a mean water production rate of 1.0 x 10(28) molecules s(-1) at a heliocentric distance of 1.61 AU about 20 days before perihelion, in agreement with production rates measured from the ground using observations of the 18-cm OH lines. Furthermore, we constrain the electron density profile and gas kinetic temperature, and estimate the coma expansion velocity by fitting the water line shapes.</p

    Who Needs Microtubules? Myogenic Reorganization of MTOC, Golgi Complex and ER Exit Sites Persists Despite Lack of Normal Microtubule Tracks

    Get PDF
    A wave of structural reorganization involving centrosomes, microtubules, Golgi complex and ER exit sites takes place early during skeletal muscle differentiation and completely remodels the secretory pathway. The mechanism of these changes and their functional implications are still poorly understood, in large part because all changes occur seemingly simultaneously. In an effort to uncouple the reorganizations, we have used taxol, nocodazole, and the specific GSK3-β inhibitor DW12, to disrupt the dynamic microtubule network of differentiating cultures of the mouse skeletal muscle cell line C2. Despite strong effects on microtubules, cell shape and cell fusion, none of the treatments prevented early differentiation. Redistribution of centrosomal proteins, conditional on differentiation, was in fact increased by taxol and nocodazole and normal in DW12. Redistributions of Golgi complex and ER exit sites were incomplete but remained tightly linked under all circumstances, and conditional on centrosomal reorganization. We were therefore able to uncouple microtubule reorganization from the other events and to determine that centrosomal proteins lead the reorganization hierarchy. In addition, we have gained new insight into structural and functional aspects of the reorganization of microtubule nucleation during myogenesis

    The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp

    Get PDF
    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities
    corecore